首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用八乙烯基倍半硅氧烷(OV-POSS)通过原位聚合法制备了POSS/PMMA杂化材料。通过FTIR、SEM,EDS以及力学性能和透光性雾度的测定等方法对杂化材料的结构和性能进行了表征。结果表明,POSS的加入对PMMA可见光的透过性无影响。POSS含量较低时,POSS的引入能明显改善材料力学性能,但当POSS含量较高时,力学性能下降。当POSS的含量为0.6%时,与纯的PMMA相比,断裂伸长率略有降低,降低了5.8%,然而,其他力学性能均有提高,其中,拉伸模量和强度分别提高了22.7%和32.0%,弯曲强度和模量分别提高了9.8%和27.0%。  相似文献   

2.
The present study deals with the development of novel cenosphere-epoxy multiscale syntactic foam (MSF) reinforced with halloysite nanotubes (HNTs). Cenospheres with different volume fractions (0, 20, 30, 40, 50 vol%) and HNTs (1 vol%) used in the fabrication of syntactic foams. The addition of HNTs increases the tensile modulus (42%) and flexural modulus (66%) compared with plain syntactic foam (PSF). Furthermore, FTIR studies reveal the strong hydrogen bonding interaction between HNTs and epoxy. Field emission scanning electron microscopy (FESEM) confirms the unique crack deflection phenomenon by HNT, which indicates the structure–property correlation. In addition, the storage and loss modulus of MSFs is 36 and 113%, respectively (at 30°C) higher than the neat epoxy. Improvement in the tensile and flexural properties along with excellent thermal stability at elevated temperature makes MSF a promising material for structural, weight-sensitive, and high-temperature applications.  相似文献   

3.
Glass fiber-reinforced Nylon-6 syntactic foams (GRSF) were fabricated by melt mixing, adding silane-modified hollow glass microspheres (HGMf) at 5, 10, 15, and 20 wt% and an impact modifier at 15 wt. Tensile test results showed that the foam's strength increased with the addition of HGMs but started to decrease when the volume fraction of the spheres was higher than 18 vol% (10 wt%). To elucidate the reinforcement mechanism, a numerical simulation of GRSF was carried out. It revealed that HGMs progressively become the reinforcement phase of GRSFs, as their volume fraction increased due to the load transfer occurring more readily in the HGMs than the fiber, which is expected to be the reinforcement. Hence, for a desired weight-strength ratio, thicker walls are necessary to delay the elastic relaxation of the microspheres and the impairing of the composite as a whole in the context of strength. HGMs with relative wall thickness τ = 0.04 produce an impairing on Young's modulus, if the volume fraction of microspheres is exceeded than 18 vol% because the microspheres are not able to endure increased loads. In addition, a significant reduction of the density was observed by up to 12% in the GRSFs with 30 wt% of both fibers and HGMs. The insight gained of GRSFs role and the numerical simulation achieved through this work, is a significant step toward developing applications of these lightweight materials, since they show good combination of strength, toughness, density, and thermal insulation performance, which can be useful in the automotive, aeronautical and sports industries.  相似文献   

4.
With the emergence of commercial grafted caged silica (Polyhedral Oligomeric Silesquioxanes, POSS) having a three-dimensional (3D) morphology with peripheral functionality, new opportunities have been created for formulating dental adhesives and composites with enhanced mechanical and physical properties. The objective of the present study was to investigate the properties obtained by incorporating grafted caged silica into acrylate based dental composite and adhesive systems. Two commercial POSS materials (methacrylated and octaphenyl grafted) were added to dental restorative-glass-filled pre-polymers, based on BisGMA (bis-phenol A-glycidyldimethacrylate), HEMA (2-hydroxyethylmethacrylate) and TEGDMA (tetraethylglycidylmethacrylate). The nanostructured organic/inorganic hybrid compounds exhibited enhanced mechanical and thermal properties in cases where the POSS added was in concentrations up to 2 wt%. Beyond this threshold concentration, properties decreased due to agglomeration. In the case of the acrylated POSS, the T g increased by 5°C, the composite compressive strength by 7%, and the bond shear strength by 36% and the shrinkage was reduced by 28% compared with neat dental composites and adhesives. Furthermore, in the case of octaphenyl grafted POSS, the compressive strength was reduced by 20%, the adhesive shear bond strength decreased by 49% and the shrinkage was reduced by 67%. It was concluded that the type of the grafted functional group of the caged silica was the dominant factor in nano-tailoring of improved dental composites and adhesives.  相似文献   

5.
Syntactic foams containing 60 vol% of hollow glass microballoons in epoxy matrix are modified with untreated nanoclays using combined mechanical and ultrasonication methods. Effects of nanoclays on flexure and thermal behavior of syntactic foams are investigated by adding different amount of nanoclays in the range of 1–3% by weight. Microscopic examinations and physical property characterization are performed to determine the interactions among constituent materials and the void formation during fabrication. It is found that the syntactic foams with 2 wt% nanoclays show the highest improvement in flexural properties (∼42% strength and ∼18% modulus) and dynamic mechanical properties (∼30% storage modulus and ∼28% loss modulus) properties. Thermal decomposition temperature is found to be unaffected by the addition of nanoclays, whereas a continuous reduction in the coefficient of thermal expansion (CTE) is observed. An examination of failure surface indicates that the failure is initiated on the tension side of the flexure sample due to fracturing of microballoons. POLYM. COMPOS., 31:1332–1342, 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
Novel poly(methyl methacrylate) (PMMA)/silica aerogel bimodal cellular foams were prepared by melt mixing and a supercritical carbon dioxide foaming process. The effects of the silica aerogel content on the morphologies and thermal‐insulating and mechanical properties of the foams were investigated by scanning electron microscopy, mechanical tests, and heat‐transfer analysis. The experimental results show that compared to the pure PMMA foam, the PMMA/silica aerogel microcellular foams exhibited more uniform cell structures, decreased cell sizes, and increased cell densities (the densities of the foams were 0.38–0.45 g/cm3). In particular, a considerable number of original nanometric cells (ca. 50 nm) were evenly embedded in the cell walls and on the inner surfaces of the micrometric cells (<10 μm). A 62.7% decrease in the thermal conductivity (0.072 W m−1 K−1) in comparison to that of raw PMMA after 0.5 wt % silica aerogel was added was obtained. Mechanical analysis of the PMMA/silica aerogel foams with 5 and 2 wt % silica aerogel showed that the compressive and flexural strengths were distinctly improved by 92 and 52%, respectively, and the dynamic storage moduli increased. The enhanced performance showed that with the addition of silica aerogel into PMMA, one can obtain thermal‐insulation materials with a favorable mechanical strength. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44434.  相似文献   

7.
The effect of hollow glass particle (microballoon) volume fraction in the range of 0.3–0.6 on the tensile properties and fracture mode of syntactic foams is characterized in the present research. Sixteen types of syntactic foams have been fabricated and tested. Four types of glass microballoons, having 220, 320, 380, and 460 kg/m3 density, are used with epoxy resin matrix for making the syntactic foam samples. These foams contain 30, 40, 50 and 60% microballoons by volume. All types of microballoons have the same size but different wall thickness, which reflects as a difference in their density. It is observed that the tensile strength increases with a decrease in the volume fraction of microballoons. All types of syntactic foams showed 60–80% decrease in the tensile strength compared with that of the neat resin. The foams containing low strength microballoons showed lower tensile modulus compared with that of the neat resin, but the presence of high strength microballoons led to an increase in the tensile modulus of the composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1254–1261, 2006  相似文献   

8.
Highly CO2-philic nanoparticles, octatrimethylsiloxy polyhedral oligomeric silsesquioxanes (POSS) are used to increase the affinity of poly(methyl methacrylate) (PMMA) to CO2 in supercritical carbon dioxide (scCO2) foaming, thus to improve its foaming performance and the foam morphology. PMMA and PMMA-POSS composite foams were produced based on the two-factorial design, at the upper and lower experimental conditions of pressure, temperature, processing time, and venting rate. The foams of PMMA-5% POSS composites exhibited smaller average pore sizes and higher pore densities than neat PMMA and PMMA-0.5% POSS composites. The smallest average pore diameter (0.3 μm) and the highest pore density (6.33 × 1012 cm−3) were obtained with this composite processed at 35°C, 32 MPa, for 24 h and depressurized with fast-venting rate (0.4 MPa/s). ScCO2 processing decreased the density of the polymer by more than 50%.  相似文献   

9.
A series of polylactides tethered with polyhedral oligomeric silsesquioxane (POSS–PLAs) were synthesized via the ring‐opening polymerization of L ‐lactide with 3‐hydroxypropylheptaisobutyl polyhedral oligomeric silsesquioxane (3‐hydroxypropylheptaisobutyl POSS) at a concentration of 0.02–2.00 mol % in the presence of a stannous(II) octoate catalyst. 1 H‐NMR spectra and a composition analysis of the POSS–PLA hybrids confirmed that 3‐hydroxypropylheptaisobutyl POSS served as an initiator for L ‐lactide in the ring‐opening polymerization. X‐ray diffraction patterns evidenced that polyhedral oligomeric silsesquioxane (POSS) molecules of POSS–PLA hybrids were well dispersed without the formation of their crystalline aggregates. The POSS–PLA hybrid with 0.50 mol % POSS content was solution‐blended with a neat polylactide (PLA) homopolymer to obtain PLA/POSS–PLA nanocomposites with various POSS–PLA contents of 1–30 wt %. The X‐ray diffraction results of the PLA/POSS–PLA nanocomposites demonstrated that the POSS–PLA was well dispersed in the neat PLA matrix. The thermal and thermooxidative degradation properties of the nanocomposites were found to be improved at POSS–PLA contents of 1–20 wt %, compared to the neat PLA. The crystallization rates and crystallinities of the PLA/POSS–PLA nanocomposites were faster and higher, respectively, with increasing POSS–PLA content because of the nucleation effect of the POSS molecules in the neat PLA matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Octa‐vinyl polyhedral oligomeric silsesquioxane (V‐POSS) and octa‐(methacryloxy) propyl polyhedral oligomeric silsesquioxane (M‐POSS) were incorporated into PMMA to prepare POSS/PMMA hybrid materials at molecular level via in situ polymerization. The resulting hybrid materials showed only swelling instead of solution in ethyl acetate, while pristine PMMA completely dissolved in ethyl acetate; moreover, the M‐POSS/PMMA hybrid materials exhibited more excellent resistance to solvent stress cracking. An excellent transparency was observed for all hybrid materials. Incorporation of V‐POSS and M‐POSS significantly improved thermal properties of PMMA. The thermal decomposition temperature of hybrid materials was enhanced except a slightly compromised initial decomposition temperature. The hybrid materials prepared with 0.2–0.6 mol% M‐POSS or V‐POSS improved the reinforcing and toughening properties in comparison to pristine PMMA. Also, the incorporation of POSS decreased the dielectric constant and dielectric loss of the hybrid materials with more voids introduced into the composites no matter the structure of POSS. POLYM. ENG. SCI., 55:565–572, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
This work presents the cellular microstructures and properties of PMMA/graphene nanoribbons (GNRs) microcellular foams. GNRs were obtained by oxidative unzipping multiwalled carbon nanotubes and solvent thermal reduction in dimethylformamide (DMF), then they were mixed with PMMA to fabricate PMMA/GNRs nanocomposites by solution blending. Subsequently, supercritical carbon dioxide (scCO2) as a friendly foaming agent was applied to fabricate PMMA/GNRs microcellular foam by a batch foaming in a special mold. The morphology of cell structure was analyzed by scanning electron microscopy and image software, showing that the addition of a smaller content of GNRs caused a fine cellular structure with a higher cell density (~3 × 1011 cells/cm3) and smaller cell sizes (~1 μm) due to their remarkable heterogeneous nucleation effect. The mechanical testing of PMMA/GNRs microcellular foams demonstrated that the obtained GNRs also could be used as a reinforcing filler to increase the mechanical properties of PMMA foams. An improvement in the compressive strength of ~80% (about 39% increase standardized by specific compressive strength) was achieved by 1.5 wt % GNRs addition, and the thermal stability of PMMA/GNRs foams was enhanced too. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45182.  相似文献   

12.
Epoxy syntactic foams were prepared with diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin, 2.4.6‐tri(dimethylaminomethyl)phenol (DMP‐30), coupling treated microsphere and short carbon fiber. The density of the foam was maintained between 0.56 and 0.91 g/cm3 for all compositions. Compressive, flexural, tensile and dynamic mechanical properties of the foams were investigated with respect to hollow glass microsphere (HGM) and carbon fiber (CF) content. A considerable improvement in the mechanical properties viz. compressive, flexural and tensile strengths was observed for the foams on incorporation of a small quantity of CF. The storage modulus were higher for the foam composites containing CF. The presence of HGM has significant influence on Tg of the syntactic foams, spherical filler diminished the Tg of the syntactic foams due to the plasticizing effect of the coupling treatment of HGM, that is helpful for enhancing damping properties of syntactic foams. POLYM. COMPOS., 37:1960–1970, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
The effect of the addition of poly(styrene‐co‐glycidyl methacrylate) P(S‐co‐GMA) copolymer on the properties of melt blended polylactide/poly(methyl methacrylate) (PLA/PMMA) 80/20 (wt %) composition was studied. In the literature high ductility levels were achieved by melt blending PLA with different additives. However, the gained ductility was counter balanced with drastic drops in strength and modulus values. The novelty of this work was the preparation of PLA‐based blends with polylactide content higher than 75 wt % which showed an impact resistance value improvement of about 60% compared with the neat PLA and maintained similar tensile strength and modulus values as well as glass transition temperature to neat PLA. The addition of only 3 pph of copolymer to PLA/PMMA blend improved the impact resistance almost 100%. The chemical reaction between PLA/PMMA blend and P(S‐co‐GMA) copolymer were analyzed by FTIR, rotational rheometry, and GPC/SEC. Phase structure and morphology were studied by Differential Scanning Calorimetry and Scanning Electronic Microscopy. Tensile and impact properties as well as thermal stability were also studied. Results showed that as the amount of copolymer in the blend was increased then higher was average molecular weight and polydispersity index. After the addition of P(S‐co‐GMA) copolymer to the PLA/PMMA blend the impact resistance, elongation at break and thermal stability were improved while tensile strength and elastic modulus remained almost unaltered. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43935.  相似文献   

14.
In this study, long carbon nanofibers (CNFs) were grown on graphene nanoplatelets (GNPs) by chemical vapor deposition (CVD) technique to develop three-dimensional (3D) bicomponent nanostructures. The structure and properties of graphene before and after CVD process were investigated in details. X-ray photoelectron analysis depicted the formation of Fe-C bonds by the deposition of carbon atoms on the catalyst surface of Fe2O3. This hybrid additive was firstly used as a reinforcing agent in melt compounding to fabricate PA6.6-based nanocomposites with enhanced mechanical and thermal properties. Both GNP and CNF-GNP have enough surface oxygen functional groups to improve the interfacial interactions with polyamide matrix and thus provide good wettability. Also, both neat GNP and its bicomponent additive with CNF also acted as a nucleating agent and allowed the crystal growth in nanocomposite structure. Homogeneous dispersion of nanoparticles was achieved by using thermokinetic mixer during compounding by applying high shear rates. Mechanical results showed that 23 and 34% improvement in flexural and tensile modulus values, respectively, was attained by the addition of 0.5 wt % CNF-GNP hybrid additive. The heat distortion temperature and Vicat softening temperature of the resulting PA6.6 nanocomposites were improved compared to neat PA6.6 material indicating performance enhancement at higher service temperature conditions. CNF was successfully grown on Fe-loaded GNP by CVD method and this hybrid additive was compounded with PA6.6 by melt-mixing process. Mechanical results showed that 34% improvement in tensile modulus value was attained by the addition of 0.5 wt % CNF-GNP hybrid additive because it acted as a nucleating agent and allowed the crystal growth in the nanocomposite structure. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48347.  相似文献   

15.
This study aims to develop carbon nanotubes (CNTs) reinforced poly(vinyl alcohol) (PVA) foams as a possible material for stapedial annular ligament (SAL) application. As-grown (AG) and purified CNTs are used as reinforcing fillers for PVA foams. Uniaxial and cyclic compression tests reveal that specific modulus and energy dissipation behavior improve after reinforcing foam with CNTs. A relatively higher improvement in specific modulus is recorded for purified CNTs as they tend to produce stiffer cell walls. Thermogravimetric analysis shows thermal stability improves after addition of CNTs in PVA foams. The 50 wt % degradation temperature is higher for PVA_AG foam in comparison to neat PVA foam. Under dynamic loading storage, modulus is found to be higher for CNT doped foams with higher relative improvement with purified CNTs than AG CNTs. It is shown that reinforcing PVA foams with purified CNTs is a feasible strategy to improve their average mechanical properties and microstructure for SAL application. While the specific elastic modulus of neat PVA foam found to be in range of 0.05–0.06 MPa gcc−1 with almost zero porosity. The addition of CNTs provides a wide range of specific elastic modulus 0.1–1.3 MPa gcc−1 with an average pores size of about 300 μm. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48736.  相似文献   

16.
Hollow glass microspheres (HGMs)/epoxy syntactic foam were reinforced by hybrid functionalized carbon nanotubes that were synthesized by simultaneous covalent and noncovalent functionalization of carbon nanotubes. The effect of hybrid functionalized carbon nanotubes on density, mechanical properties, and water absorption of HGMs/epoxy syntactic foam was studied. The study indicated that the dispersion of carbon nanotubes in epoxy resin can be improved by hybrid functionalization. The compression strength of syntactic foam reinforced by hybrid functionalized carbon nanotubes was significantly enhanced. The maximum compressive strength of syntactic foam corresponding to chitosan modified carbon nanotubes approached 60 MPa. Hybrid functionalized carbon nanotubes had little effect on the water absorption ability of syntactic foam, and was less than 1%. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48586.  相似文献   

17.
The present study focuses on the preparation of a novel hybrid epoxy nanocomposite with glycidyl polyhedral oligomeric silsesquioxane (POSS) as nanofiller, carboxyl terminated poly(acrylonitrile‐co‐butadiene) (CTBN) as modifying agent and diglycidyl ether of bisphenol A (DGEBA) as matrix polymer. The reaction between DGEBA, CTBN, and glycidyl POSS was carefully monitored and interpreted by using Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). An exclusive mechanism of the reaction between the modifier, nanofiller, and the matrix is proposed herein, which attempts to explains the chemistry behind the formation of an intricate network between POSS, CTBN, and DGEBA. The mechanical properties, such as tensile strength, and fracture toughness, were also carefully examined. The fracture toughness increases for epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems with respect to neat epoxy, but for hybrid composites toughening capability of soft rubber particles is lost by the presence of POSS. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. The viscoelastic properties of epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems were analyzed using dynamic mechanical thermal analysis (DMTA). The storage modulus shows a complex behavior for the epoxy/POSS composites due to the existence of lower and higher crosslink density sites. However, the storage modulus of the epoxy phase decreases with the addition of soft CTBN phase. The Tg corresponding to epoxy‐rich phase was evident from the dynamic mechanical spectrum. For hybrid systems, the Tg is intermediate between the epoxy/rubber and epoxy/POSS systems. Finally, TGA (thermo gravimetric analysis) studies were employed to evaluate the thermal stability of prepared blends and composites. POLYM. COMPOS., 37:2109–2120, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
In this study, cardanol, a natural phenol, has been applied to toughen phenolic foam by bisphenol modification. In order to verify the occurrence of Friedel–Craft alkylation between cardanol and phenol on the side chain, FTIR, and NMR had been used to characterize the bisphenol successfully. With the introduction of cardanol, the viscosity of prepolymers increased. The SEM results demonstrated that the some cells with increasingly large size existed, when the dosage of cardanol increased. With respect to the mechanical properties, phenolic foams modified by 10 wt % cardanol increased by 22% in flexural strength and 28% in bending modulus compared to pure phenolic foams, which indicates that the incorporation of cardanol does improve the toughness of phenolic foams. In addition, the effects of different dosage of cardanol on the apparent density and thermal stability of phenolic foams were investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39942.  相似文献   

19.
The present study focuses on developing functionally graded syntactic foams (FGSFs) based on a layered co‐curing technique. The FGSFs were characterized for compressive and flexural properties and compared with plain syntactic foams. The results showed that the specific compressive modulus was 3–67% higher in FGSFs compared to plain syntactic foams. FGSF exhibited 5–34% and 34–87% higher specific modulus and strength, respectively in flexural mode. The microscopic examinations of comparative responses of the filler and matrix to deformation suggest that the failure is dominated by the matrix. The gradient in the composition of syntactic foams helps in effectively distributing the stress throughout the microstructure and results in improved mechanical performance of syntactic foams. From the microscopy studies, it is evident that, the failure mechanism in the FGSF under flexural loading is governed by a crack that initiated on the tensile side of the specimen and propagated through the thickness to cause complete fracture. The microscopic observations further clearly demonstrate the existence of seamless interfaces between the layers and a clear difference in the cenosphere concentration across the interface, affirming the gradation in the prepared samples. The results show that appropriate compositions of FGSFs can be selected to develop materials with improved mechanical performance. POLYM. COMPOS., 36:685–693, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
The structural properties of completely condensed and incompletely condensed silsesquioxane in the polyurethane nanocomposites containing 17.5 wt % of silsesquioxane was investigated by FTIR, TGA, scanning electron microscopy (SEM), X‐ray diffraction (XRD), and DMA techniques. FTIR spectra shows the existence of hydrogen bonding in the PU‐POSS system. The intensity of hydrogen bonding decreases with the increase in POSS‐H loading suggesting the prevention of the formation of hydrogen bonding by the addition of POSS‐H molecule. SEM analysis reveals the incompatibility of POSS‐H molecule in the PU matrices exhibiting greater extent of phase separation and a large number of POSS aggregates on the addition of POSS‐H molecule in the PU‐POSS matrices. The TGA thermograms show that the POSS‐PU hybrids possess excellent thermal stabilities. However, the incorporation of POSS‐H molecule leads to a decrease in the thermal properties and only the char yield values increase with the increase in the POSS‐H content in the PU‐POSS hybrids. The XRD pattern reveals that the crystalline structure of POSS molecules are destroyed by the polymer matrices in the PU‐POSS hybrid films. The decrease in the bending storage modulus E′ values with the increase in the POSS‐H content proves the retardation of hydrogen bonding formation by the POSS‐H molecule in the PU‐POSS hybrid. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号