首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, cryptocrystalline graphite (CG) was investigated as a novel functional filler for acrylonitrile-butadiene rubber (NBR)/carbon black (CB) composites. NBR/CB/CG composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) as well as differential scanning calorimetry (DSC). The results showed that NBR/CB/CG-10 increased by 18.2%, 11.0%, and 10.0% in tensile strength, 300% tensile modulus and tear strength, respectively compared with NBR/CB. Uniform filler dispersion and stronger interfacial interaction contributed to enhancing the mechanical property of NBR/CB/CG composites. It was revealed that the small particle size, rough surface, and defective structure of CG facilitated its exfoliation and intercalation. In addition, the tribological performance of NBR/CB/CG composites was tested on a ring-on-block wear tester under dry sliding conditions. The friction coefficient and specific wear rate of NBR/CB/CG-5 reduced by 50.3% and 51.4%, respectively through the formation of fine lubrication and transfer films. CG enhanced the thermal stability, mechanical, and tribological performance of NBR composites simultaneously and the results of this work proved that CG would be a cost-effective and resource-available functional filler especially suitable for rubber seal application.  相似文献   

2.
Plant fiber reinforced polymer composites (PFRPs) in practical application are often subjected to both complex friction and variable temperature environments. The present work explores the possibility of reinforcing rice husk/polyvinyl chloride (RH/PVC) composites with basalt fibers (BF) for developing a new wear resistant material with improved thermal stability. The results showed that the structural strength and wear resistance of the composites increased at first and then decreased with an increasing ratio of BF/RH, the highest value occurred at a BF/RH ratio of 8/42. The thermal stability of composites had a positive relationship with BF/RH ratio. The composites added with BF all possessed improved performance in comparison with unadded composites. Hence, the findings of this article proposed some new perspectives on improving the wear resistance and thermal stability of PFRPs that would broaden their practical application.  相似文献   

3.
The composites of polytetrafluoroethylene (PTFE) filled with expanded graphite (EG), poly(p‐oxybenzoyl) (POB), and basalt fiber (BF) were prepared by heating compression and sintering molding. The tribological behavior of PTFE composites was investigated with a pin‐on‐disk tester under dry conditions and seawater lubrication. The worn surface of PTFE composites and the transfer film on the counterface were observed with a scanning electron microscope. The results indicated that the incorporation of EG and POB improved the hardness of PTFE composites, and addition of BF led to greater load‐carrying capacity. Compared to pure PTFE, the coefficients of friction of PTFE composites slightly increased, but the wear rates were significantly reduced (the wear rate of composite with 3% EG being only 10.38% of pure PTFE). In addition, all the composites exhibited a lower coefficient of friction (decreases of about 0.03–0.07) but more serious wear under seawater lubrication than under dry sliding. The wear mechanism changed from serious abrasive wear of pure PTFE to slight adhesion wear of PTFE composites under both conditions. A transfer film was obviously found on the counterface in seawater, but it was not observed under dry conditions. Among all the materials tested, the PTFE‐based composite containing 20% POB (mass fraction), 2% EG, and 3% BF exhibited the best comprehensive performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2523–2531, 2013  相似文献   

4.
Polytetrafluoroethylene (PTFE) owns an excellent self-lubricating performance, but its wear rate is very high due to the large-scale spalling of the matrix in the friction. In this paper, A new kind of PTFE composites with sandwich structure was prepared by layer-press technology, whose middle layer is filled with metal mesh. The influence of the mesh structure and mesh density of middle metal layer on tribological properties of composites were researched in detail. The results revealled that the metal mesh located in the composites can efficiently prevent the large-scale spalling of PTFE, which induces the sample of PTFE/500# plain woven dutch metal mesh (PTFE-500#PWD) to have a lower wear rate (9 × 10−5 mm3/Nm) and COF (0.106) under the fixed experimental condition. The prepared PTFE/metal mesh composites reveal excellent anti-friction and anti-wear performance, which can be used to fabricate a new kind of self-lubricating materials.  相似文献   

5.
Short basalt fibers (BFs)‐reinforced polyimide (PI) composites filled with MoS2 and graphite were fabricated by means of hot‐press molding technique. The tribological properties of the resulting composites sliding against GCr15 steel ring were investigated on a model ring‐on‐block test rig. The wear mechanisms were also comparatively discussed, based on scanning electron microscopic examination of the worn surface of the PI composites and the transfer film formed on the counterpart. Experimental results revealed that MoS2 and graphite as fillers significantly improved the wear resistance of the BFs‐reinforced polyimide (BFs/PI) composites. For the best combination of friction coefficient and wear rate, the optimal volume content of MoS2 and graphite in the composites appears to be 40 and 35%, respectively. It was also found that the tribological properties of the filled BFs/PI composites were closely related with the sliding conditions such as sliding speed and applied load. Research results show that the BF/PI composites exhibited better tribological properties under higher PV product. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A silicon oxide (SiO2) nanoparticles-decorated short carbon fiber (SCF) hybrid (SCF-SiO2) was designed to improve the weak interfacial bonding between fibers and matrix. Nano-SiO2 was grafted onto carbon fibers by introducing amino group and epoxy group on the surface of carbon fibers and SiO2, respectively. The chemical composition of SCF-SiO2 was analyzed by Fourier transform infrared spectrometer and energy-dispersive spectrometry, the microstructure of SCF-SiO2 were investigated by scanning electron microscope, and then the hybrid filler was introduced into Poly(ether ether ketone) (PEEK). Due to the strong interfacial interaction between filler and matrix, the mechanical and tribological properties of SCF-SiO2/PEEK composites were significantly better than SCF/PEEK composites. In order to further improve the tribological properties of the composites, micrometer-sized cenosphere (CS) particles were introduced into the aforementioned system to prepare multicomponent composites. The test results of friction and wear indicate that the CS/SCF-SiO2/PEEK composites have the optimal tribological properties. Compared with pure PEEK, the friction coefficient of CS/SCF-SiO2/PEEK composites under 200 N load decreases by 56.4% and the specific wear rate decreases by 87.4%. Meanwhile, the thermal decomposition temperature of CS/SCF-SiO2/PEEK composites is increased by 40 °C compared to pure PEEK. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48749.  相似文献   

7.
Resin-based friction materials (RFM) are widely used in vehicle brakes. However, the thermosetting resins and rigid fillers in RFM have low toughness and produce strong vibration behavior during continuous friction processes, which adversely affects the equipment. This work proposed a method for co-blending modification of RFM with silicone rubber powders (SRP) to mitigate friction-induced vibrations, and the mechanism of silicone rubber modification on the vibrational behavior of RFM during friction was investigated. The results demonstrate that SRP-modified RFM exhibit excellent damping property and frictional characteristics. SRP modification improves the stability of the coefficient of friction and reduces fatigue wear. The wear rate of RFM modified with 10 wt% SRP reduced by 29% and the average amplitude of friction-induced vibration decreased by 35.5% compared to unmodified RFM. This work provides both theoretical and practical foundations for designing and developing RFM with high damping, low wear, and low vibration characteristic.  相似文献   

8.
Minimization and suppression of friction and noise in underwater bearings remains a key aspect in modern marine vehicle industry owing to the growing need for reliability, and passenger comfort. In this study, graphene nano-flake (Gr) was introduced into the nitrile butadiene rubber (NBR) with assistance of ionic liquid (IL). Owing to the positive charge generated by the secondary ordering layer on the Gr surface, Gr were effectively exfoliate into few layers and uniformly dispersed in the NBR matrix. Accordingly, the friction coefficient and volume wear rate decreased to 0.3124 and 6.44 × 10−6 mm3·N−1·m−1 in the nanocomposite, depicting a 31.52% and 51.9% reduction than pure NBR. It was demonstrated that the reinforced hardness and the formation of tribological layer of Gr played a vital role in the lubricating mechanism where both deformation and the continuation of the stick–slip effect were prevented. As a proof of concept, the total vibration acceleration level of the NBR/GR-IL composite decreased from 111.37 ± 5.57 dB to 79.68 ± 3.98 dB, exhibiting good noise and vibration suppression effect. This work not only broadens the application of GR-based materials, but also shed some light on the designing philosophy to improve the efficiency, service life and safety of the future marine vehicles.  相似文献   

9.
The thermal and tribological properties of silicon composites were improved by choosing polytetrafluoroethylene (PTFE) as a thickener and alumina nitride (AlN) and flake graphite (FG) as thermal conductive additives, producing AlN‐modified, FG‐modified, and AlN/FG‐modified PTFE‐based thermal silicon composites (AlN–PTSC, FG–PTSC, and AlN/FG–PTSC, respectively). Three‐dimensional network‐configuration representative volume element models were built to investigate the thermal properties of these composites by applying a Monte Carlo, controllable, spatial distribution algorithm. The composites’ thermal conductivity and volume resistance were also measured. Tribological tests were conducted using a ball‐on‐disk reciprocating friction and wear tester. Scanning electron microscopy and energy dispersive spectroscopy were used to analyze the morphologies and elements of worn surfaces. The results showed that AlN/FG–PTSC possessed the best thermal properties, which were ascribed to a compact thermal conductive network; thermal conductivity was 88.8% and 44.8% greater than the highest value of AlN–PTSC and FG–PTSC, respectively. The numerical values of thermal conductivity were in a good agreement with experimental results. The optimal electrical tribological properties of AlN/FG–PTSC were ascribed to the functions of thermal and electrical properties combined, which could be helpful in abating the arc erosion on friction contacts. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45263.  相似文献   

10.
To improve the tribological properties of benzoxazine (BOZ) resin, bismaleimides (BMI) resin is chosen as organic phase, hyperbranched polysilane functionalized SiO2 nanoparticles (HBPSi‐SiO2) are chosen as inorganic modifiers to prepare HBPSi‐SiO2/BOZ‐BMI composites using high shear and ultrasonic processes. The effect of content of HBPSi‐SiO2 on the mechanical properties and tribological properties of the composites are investigated. The results show that suitable addition of HBPSi‐SiO2 can largely enhance the impact strength, reduce the friction coefficient, and wear rate of BOZ‐BMI resin. Scanning electron microscopy is employed to research the wearing mechanism of materials. The severe wear of the BOZ pure resin is owing to fatigue wear, and the moderate wear of BOZ‐BMI resin is attributed to adhesive wear. While, the mild wear of the composites with HBPSi‐SiO2 is due to abrasive wear. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
In order to study the effect of nanocopper oxide (n-CuO) on the friction properties of fluorosilicone rubber (FVMQ), the mechanical blending method was used by adding n-CuO in preparation of FVMQ. Characterization of scanning electron microscopy, X-ray diffraction analysis, energy dispersive spectroscopy, and so on were utilized for studying the mechanism of n-CuO in FVMQ. The experimental test on tensile, tear, and friction performance were performed on n-CuO/FVMQ at both room temperature (RT) and 200°C. In comparison with n-CuO /FVMQ, the wear depth of FVMQ increased by 52.933 and 5.605 μm for RT and 200°C, respectively. Besides, the wear loss of FVMQ increased by 2.9 and 5.3 mg, respectively. The results show that for both at RT or 200°C, the addition of n-CuO changes the friction mechanism of FVMQ. The friction coefficient and wear loss of FVMQ are effectively reduced, so that the friction property of rubber matrix is significantly enhanced. In addition, the tearing property of FVMQ is improved by adding n-CuO to change the crosslinking density of FVMQ.  相似文献   

12.
Enhancement of the wear resistance of bronze‐filled polytetrafluoroethylene (PTFE) composites has been achieved using various fillers, for example, chromic oxide (Cr2O3), molybdenum disulfide (MoS2), graphite, and nanometer aluminum oxide (n‐Al2O3), in the present study. The wear resistance was evaluated by a block‐on‐ring wear tester, and the effects of fillers on the wear resistance as well as the mechanism were investigated. The wear rate for the composite where the recipe containing 59% PTFE + 40% bronze + 1% Cr2O3 was 0.5 × 10?5 mm?3/N m and for the composite in the recipe containing 60% PTFE + 40% bronze was 4.2 × 10?5 mm?3/N m, which meant that that Cr2O3 increased the wear resistance by approximately 10 times. The differential scanning calorimetry measure analysis showed that Cr2O3 had a positive effect on the crystallization of PTFE; the crystallinity of PTFE composites increased from 45% to 52%, which exhibited improved wear resistance. Wear testing and scanning electron microscope analysis had shown that Cr2O3 had a positive effect on the formation of transfer film and keeping it stable to exhibit improved wear resistance. X‐ray photoelectron spectroscopy results also showed that Cr2O3 was effective in tribochemical reactions during sliding against stainless ring; these maybe responsible for forming transfer film and lowering wear rate of composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41117.  相似文献   

13.
Five kinds of polytetrafluoroethylene (PTFE)‐based composites, pure PTFE, PTFE + 30(v)% MoS2, PTFE + 30(v)% PbS, PTFE + 30(v)% CuS, and PTFE + 30(v)% graphite (GR) composites, were first prepared. Then the friction and wear properties of these PTFE composites, sliding against GCr15‐bearing steel under both dry and liquid paraffin‐lubricated conditions, were studied by using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of the PTFE composites formed on the surface of GCr15 bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling with MoS2, PbS, CuS, or graphite to PTFE can reduce the wear of the PTFE composites by two orders of magnitude compared to that of pure PTFE under dry friction conditions. However, the friction and wear‐reducing properties of these PTFE composites can be greatly improved by lubrication with liquid paraffin. Investigations of transfer films show that MoS2, PbS, CuS, and graphite promote the transfer of the PTFE composites onto the surface of GCr15‐bearing steel under dry friction conditions, but the transfer of the PTFE composites onto the surface of GCr15‐bearing steel can be greatly reduced by lubrication with liquid paraffin. SEM examinations of worn surfaces show that with lubrication of liquid paraffin, the creation and development of the cracks occurred on the worn surfaces of the PTFE composites under load, which reduces the load‐supporting capacity of the PTFE composites. This would lead to the deterioration of the friction and wear properties of the PTFE composites under higher loads (>600N). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 751–761, 1999  相似文献   

14.
Friction and wear behaviors of poly (vinyl alcohol) (PVA) modified PBO fabric composites were evaluated in a pin‐on‐disc friction and wear tester, and the relationship between the properties and the structure change resulting from PVA modification were intensively investigated using thermogravimetric analysis (TG) and scanning electronic microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The results indicated that the PVA thin film formed on the fabric surface by chemical crosslinking reaction could improve the antiwear property of the PBO fabric composites efficiently. In argon‐300°C condition, the antiwear property of the PBO fabric composites was improved by 35%, which was due to the improvement of the bonding strength between the fabric and resin and the dispersion of the shear stress induced by the shear creep and plastic deformation of the PVA film in friction. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1313‐1320, 2013  相似文献   

15.
In this study, aminopropyl trimethoxysilane as an interfacial modifier was introduced on the surface of graphene (Gr) nanoplatelets. The effects of the silane-modified graphene (SGr) loading (0, 0.05, 0.1, 0.3, and 0.5 wt %) and silane modification on the tensile, compressive, interlaminar shear stress (ILSS), and tribological properties of the epoxy-based nanocomposites were investigated. Out of these specimens, the highest values of ILSS and compressive strength were related to the 0.3 wt % SGr–epoxy nanocomposite. The addition of SGr enhanced the tensile strength and strain to failure only at low contents (i.e., 0.05 wt %). Also, the tensile and compressive moduli were improved, and the highest values were observed at a 0.5 wt % SGr loading. In addition, decreases of approximately 40 and 68% in the coefficient of friction and wear rate, respectively, were observed at a 0.3 wt % SGr loading. Enhanced tensile, compressive, ILSS, and wear properties in the SGr–epoxy specimens were observed compared to those in the Gr–epoxy specimens. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47410.  相似文献   

16.
1H,1H,2H,2H‐Perfluorooctyl trichlorosilane (PFTS) was used to modify TiO2 nanoparticles, and hydrophobic PFTS–TiO2 nanoparticles were obtained by an ultrasonic reaction method. The PFTS–TiO2 surface morphological and hydrophobic properties were analyzed with scanning electron microscopy (SEM), Fourier transform infrared spectrometry, and contact angle (CA) testing. Then, the poly(p‐phenylene benzobisoxazole) fabric–phenolic composite filled with PFTS–TiO2 as a lubricant additive was fabricated by a dip‐coating process. The tribological properties of the composite were investigated, and the wear surface morphology was observed by SEM. The experimental results show that the water CA of the composite filled with PFTS–TiO2 was 158°, and the composite containing 4 wt % PFTS–TiO2 exhibited excellent antifriction and abrasion resistance. The hydrophobic surface of the composite showed excellent durable performance with a static water CA of 126.7° after abrasion. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45077.  相似文献   

17.
Four kinds of polytetrafluoroethylene (PTFE)-based composites, such as pure PTFE, PTFE + 30(vol.)% carbon fiber, PTFE + 30(vol.)% glass fiber, and PTFE + 30(vol.)% K2Ti6O13 whisker composite, were prepared. The friction and wear properties of these fiber- and whisker-reinforced PTFE composites sliding against GCr15-bearing steel (SAE52100 steel) under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester (Timken wear tester). Then the worn surfaces of these PTFE composites and the transfer films formed on the surface of GCr15-bearing steel were investigated by using a Scanning Electron Microscope (SEM) and an Optical Microscope, respectively. Experimental results show that the friction and wear properties of the PTFE composites reinforced with carbon fiber, glass fiber, and a K2Ti6O13 whisker can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of these PTFE composites can be decreased by one order of magnitude compared to those under dry friction conditions. Meanwhile, the wear of the fiber- and whisker-reinforced PTFE composites in liquid paraffin lubrication increases with the increase of load, but the friction coefficients of these PTFE composites first decrease with the increase of load, and then increase with the increase of load. The variations of friction coefficients with load for these PTFE composites in liquid paraffin lubrication can be described properly by the Stribeck's curve as given in this article. However, when the load increases to the load limits of the PTFE composites, their friction and wear increase sharply. SEM and optical microscope investigations show that the interactions between liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, create some obvious cracks on the worn surfaces of the PTFE composites. The creation and the development of the cracks reduce the load-carrying capacity of the PTFE composites, and therefore lead to the increase of the friction and wear of the PTFE composites under higher loads. Meanwhile, the transfer of the fiber- and whisker-reinforced PTFE composites onto the counterfaces can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1393–1402, 1998  相似文献   

18.
Five kinds of polytetrafluoroethylene (PTFE)-based composites were prepared: PTFE, PTFE + 30 vol % SiC, PTFE + 30 vol % Si3N4, PTFE + 30 vol % BN, and PTFE + 30 vol % B2O3. The friction and wear properties of these ceramic particle filled PTFE composites sliding against GCr15 bearing steel under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester. The worn surfaces and the transfer films formed on the surface of the GCr15 bearing steel of these PTFE composites were investigated by using a scanning electron microscope (SEM)and an optical microscope, respectively. The experimental results show that the ceramic particles of SiC, Si3N4, BN, and B2O3 can greatly reduce the wear of the PTFE composites; the wear-reducing action of Si3N4 is the most effective, that of SiC is the next most effective, then the BN, and that of B2O3 is the worst. We found that B2O3 reduces the friction coefficient of the PTFE composite but SiC, Si3N4, and BN increase the friction coefficients of the PTFE composites. However, the friction and wear properties of the ceramic particle filled PTFE composites can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of the PTFE composites can be decreased by 1 order of magnitude. Under lubrication of liquid paraffin the friction coefficients of these ceramic particle filled PTFE composites decrease with an increase of load, but the wear of the PTFE composites increases with a load increase. The variations of the friction coefficients with load for these ceramic particle filled PTFE composites under lubrication of liquid paraffin can be properly described by the relationship between the friction coefficient (μ) and the simplified Sommerfeld variable N/P as given here. The investigations of the frictional surfaces show that the ceramic particles SiC, Si3N4, BN, and B2O3 enhance the adhesion of the transfer films of the PTFE composites to the surface of GCr15 bearing steel, so they greatly reduce the wear of the PTFE composites. However, the transfer of the PTFE composites onto the surface of the GCr15 bearing steel can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. Meanwhile, the interactions between the liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, create some cracks on the worn surfaces of the ceramic particle filled PTFE composites; the creation and development of these cracks reduces the load-supporting capacity of the PTFE composites. This leads to the deterioration of the friction and wear properties of the PTFE composites under higher loads in liquid paraffin lubrication. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2611–2619, 1999  相似文献   

19.
The polyimide (PI) composites reinforced with carbon fibers, glass fibers, and aramid fibers were fabricated by means of a hot‐press molding technique and irradiated by electron or proton for a certain time. The friction and wear behavior after irradiation, sliding against GCr15 steel balls, were evaluated in a ground‐based simulation facility using ball‐on‐disk tribosystem. The change of the chemical composition of the radiated surface was examined by X‐ray photoelectron spectroscopy. The worn morphologies and radiated surfaces of the materials were observed by scanning electron microscope to reveal the wear mechanism. Experimental analysis indicated that the chemical composition of the materials changed and an irradiated layer was formed at the surface. This irradiation layer had an important effect on the friction and wear behavior of the PI composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40774.  相似文献   

20.
Four kinds of polytetrafluoroethylene (PTFE)-based composites, such as pure PTFE, PTFE + 30(v)%Cu, PTFE + 30(v)%Cu2O, and PTFE + 30(v)%CuS composite, were prepared. Then the friction and wear properties of the PTFE composites filled with Cu, Cu2O, or CuS sliding against GCr15-bearing steel under both dry and liquid paraffin-lubricated conditions were studied by using an MHK-500 ring-block wear tester. Finally, the worn surfaces and the transfer films of these PTFE composites formed on the surface of GCr15-bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that the antiwear properties of these PTFE composites can be greatly improved by filling Cu, Cu2O, or CuS to PTFE, and the wear of these PTFE composites can be decreased by two orders of magnitude compared to that of pure PTFE under dry friction conditions. Meanwhile, CuS increases the friction coefficient of the PTFE composite, but Cu and Cu2O reduce the friction coefficients of the PTFE composites. However, the friction and wear properties of Cu, Cu2O, or CuS-filled PTFE composites can be greatly improved by lubrication with liquid paraffin. The friction coefficients of these PTFE composites can be decreased by one order of magnitude compared to those under dry friction conditions, while the wear of these PTFE composites can be decreased by one to two orders of magnitude. The PTFE + 30(v)%Cu composite exhibits excellent friction and wear-reducing properties under higher loads in liquid paraffin-lubricated conditions, so the PTFE + 30(v)%Cu composite is much more suitable for application under oil-lubricated conditions in practice. Optical microscope investigation of transfer films shows that Cu, Cu2O, and CuS enhance the adhesion of the transfer films to the surface of GCr15-bearing steel, so they greatly reduce the wear of the PTFE composites. However, the transfer of the PTFE composites onto the surface of GCr15-bearing steel can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. SEM examination of worn surfaces shows that the interaction between liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, creates some cracks on the worn surfaces of Cu2O or CuS-filled PTFE composites, the creation and development of the cracks reduces the load-carrying capacity of the PTFE composites; this leads to the deterioration of the friction and wear properties of the PTFE composites under higher loads in liquid paraffin lubrication. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1455–1464, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号