首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
We employed temperature-dependent photoluminescence (PL) to explain the donor and acceptor dynamics in phosphorus doped stable p-type P:ZnO nanorods. The room temperature PL revealed good crystalline and optical quality of P:ZnO nanorods. The 10 K PL spectrum exhibited a dominant acceptor bound exciton (A0X) or donor bound exciton (D0X) emission corresponding to p- and n-type P:ZnO nanorods, respectively. The donor-acceptor-pair (DAP) transitions exhibited different thermal dissociation energies for the p- and n-type P:ZnO nanorods, suggesting their different quenching channels. The quenching of the DAP transitions of the p-type ZnO:P nanorods was associated with the thermal dissociation of the DAP into free excitons, while the DAP transition of the n-type ZnO:P nanorods was quenched through the thermal dissociation of the shallow donor into free electrons. The rectifying behavior of a p-n homojunction diode formed by the p-type P:ZnO nanorods on n-type ZnO film confirmed the p-type conduction of the P:ZnO nanorods.  相似文献   

2.
This work reports for the first time a highly efficient single-crystal cesium tin triiodide (CsSnI3) perovskite nanowire solar cell. With a perfect lattice structure, low carrier trap density (≈5 × 1010 cm−3), long carrier lifetime (46.7 ns), and excellent carrier mobility (>600 cm2 V−1 s−1), single-crystal CsSnI3 perovskite nanowires enable a very attractive feature for flexible perovskite photovoltaics to power active micro-scale electronic devices. Using CsSnI3 single-crystal nanowire in conjunction with highly conductive wide bandgap semiconductors as front-surface-field layers, an unprecedented efficiency of 11.7% under AM 1.5G illumination is achieved. This work demonstrates the feasibility of all-inorganic tin-based perovskite solar cells via crystallinity and device-structure improvement for the high-performance, and thus paves the way for the energy supply to flexible wearable devices in the future.  相似文献   

3.
The emerging 2D layered transition metal trihalides (MX3) have attracted extremely high interest given their exceptional structural and physical properties. Continuing to extend the library of 2D MX3 is essential for exploring new physical phenomena and enabling new functionality. Herein, the optical and electrical properties and the photodetection behavior of atomically thin RhI3 flakes exfoliated from bulk crystals are reported. This compound exhibits superior air and thermal stability, as well as thickness-dependent bandgap from 1.1 (18L) to 1.4 eV (2L). Field-effect transistors based on the few-layer RhI3 flakes display n-type semiconducting behavior with competitive mobility of 2.5 cm2 V−1 s−1 and ON/OFF current ratio of 4 × 104. Importantly, the outstanding responsivity of 11.5 A W−1 and high specific detectivity of 2 × 1010 Jones are recorded from the RhI3 photodetectors under 980 nm illumination at room temperature in air. These findings indicate a variety of potential applications of atomically thin RhI3 flakes in future 2D-material-based electronic and optoelectronic devices.  相似文献   

4.
Mixed Ruddlesden–Popper (RP) perovskites are of great interest in light‐emitting diodes (LEDs), due to the efficient energy transfer (funneling) from high‐bandgap (donor) domains to low‐bandgap (acceptor) domains, which leads to enhanced photoluminescence (PL) intensity, long PL lifetime, and high‐efficiency LEDs. However, the influence of reduced effective emitter centers in the active emissive film, as well as the implications of electrical injection into the larger bandgap donor material, have not been addressed in the context of an active device. The electrical and optical signatures of the energy cascading mechanisms are critically assessed and modulated in a model RP perovskite series ((C8H17NH3)2(CH(NH2)2)m?1PbmBr3m+1). Optimized devices demonstrate a current efficiency of 22.9 cd A?1 and 5% external quantum efficiency, more than five times higher than systems where funneling is absent. The signature of nonideal funneling in RP perovskites is revealed by the appearance of donor electroluminescence from the device, followed by a reduction in the LED performance  相似文献   

5.
Graphene, a star 2D material, has attracted much attention because of its unique properties including linear electronic dispersion, massless carriers, and ultrahigh carrier mobility (104–105 cm2 V?1 s?1). However, its zero bandgap greatly impedes its application in the semiconductor industry. Opening the zero bandgap has become an unresolved worldwide problem. Here, a novel and stable 2D Ruddlesden–Popper‐type layered chalcogenide perovskite semiconductor Ca3Sn2S7 is found based on first‐principles GW calculations, which exhibits excellent electronic, optical, and transport properties, as well as soft and isotropic mechanical characteristics. Surprisingly, it has a graphene‐like linear electronic dispersion, small carrier effective mass (0.04 m0), ultrahigh room‐temperature carrier mobility (6.7 × 104 cm2 V?1 s?1), Fermi velocity (3 × 105 m s?1), and optical absorption coefficient (105 cm?1). Particularly, it has a direct quasi‐particle bandgap of 0.5 eV, which realizes the dream of opening the graphene bandgap in a new way. These results guarantee its application in infrared optoelectronic and high‐speed electronic devices.  相似文献   

6.
Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D‐BNNS) network using ice‐templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m−1 K−1), a low thermal expansion coefficient (24–32 ppm K−1), and an increased glass transition temperature (Tg) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.  相似文献   

7.
Herein, the first semiconducting and magnetic phosphonate metal–organic framework (MOF), TUB75, is reported, which contains a 1D inorganic building unit composed of a zigzag chain of corner-sharing copper dimers. The solid-state UV–vis spectrum of TUB75 reveals the existence of a narrow bandgap of 1.4 eV, which agrees well with the density functional theory (DFT)-calculated bandgap of 1.77 eV. Single-crystal conductivity measurements for different orientations of the individual crystals yield a range of conductances from 10−3 to 103 S m−1 at room temperature, pointing to the directional nature of the electrical conductivity in TUB75. Magnetization measurements show that TUB75 is composed of antiferromagnetically coupled copper dimer chains. Due to their rich structural chemistry and exceptionally high thermal/chemical stabilities, phosphonate MOFs like TUB75 may open new vistas in engineerable electrodes for supercapacitors.  相似文献   

8.
La2Sn2O7 is a transparent conducting oxide (TCO) material and shows a strong near‐infrared fluorescent at ambient pressure and room temperature. By in situ high‐pressure research, pressure‐induced visible photoluminescence (PL) above 2 GPa near 2 eV is observed. The emergence of unusual visible PL behavior is associated with the seriously trigonal lattice distortion of the SnO6 octehedra, under which the Sn–O1–Sn exchange angle θ is decreased below 22.1 GPa, thus enhancing the PL quantum yield leading to Sn 3P11S0 photons transition. Besides, bandgap closing followed by bandgap opening and the visible PL appearing at the point of the gap reversal, which is consistent with high‐pressure phase decomposition, are discovered. The high‐pressure PL results demonstrate a well‐defined pressure window (7–17 GPa) with flat maximum PL yielding and sharp edges at both ends, which may provide a great calibration tool for pressure sensors for operation in the deep sea or at extreme conditions.  相似文献   

9.
2D electrode materials with layered structures have shown huge potential in the fields of lithium‐ and sodium‐ion batteries. However, their poor conductivity limits the rate performance and cycle stability of batteries. Herein a new colloid chemistry strategy is reported for making 2D ultrathin layered SnSe nanoplates (SnSe NPs) for achieving more efficient alkali‐ion batteries. Due to the effect of weak Van der Waals forces, each semiconductive SnSe nanoplate stacks on top of each other, which can facilitate the ion transfer and accommodate volume expansion during the charge and discharge process. This unique structure as well as the narrow‐bandgap semiconductor property of SnSe simultaneously meets the requirements of achieving fast ionic and electronic conductivities for alkali‐ion batteries. They exhibit high capacity of 463.6 mAh g−1 at 0.05 A g−1 for Na‐ion batteries and 787.9 mAh g−1 at 0.2 A g−1 for Li‐ion batteries over 300 cycles, and also high stability for alkali‐ion batteries.  相似文献   

10.
《材料科学技术学报》2019,35(9):2064-2069
The thermal and environmental barrier coatings (T/EBC) are technologically important for advanced propulsion engine system. In this study, RE4Hf3O12 (RE=Ho, Er, Tm) with defect fluorite structure was investigated for potential use as top TBC layer. Dense pellets were fabricated via a hot pressing method and the mechanical and thermal properties were characterized. RE4Hf3O12 (RE=Ho, Er, Tm) possessed a high Vickers hardness of 11 GPa. The material retained high elastic modulus at elevated temperatures up to 1773 K, which made it attractive for high temperature application. The coefficient of thermal expansion (CTE) of RE4Hf3O12 (RE = Ho, Er, Tm) laid in the range between 7 × 10−6 K−1 to 10 × 10−6 K−1 from 473 K to 1673 K. In addition, the rare earth hafnates exhibited lower thermal conductivity which rendered it a good candidate material for thermal barrier applications.  相似文献   

11.
Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.  相似文献   

12.
The alkaline orthosilicates of M2SiO4 (M = Ba, Mg, Sr) activated with Dy3+ and co-doped with Ho3+ are prepared through conventional solid-state method, i.e., mixing and grinding of solid form precursors followed by high-temperature heat treatments of several hours in furnaces, generally under open atmosphere and investigated by X-ray diffraction (XRD) to get phase properties and photoluminescence (PL) analysis to get luminescence properties. The thermal behaviours of well-mixed samples were determined by differential thermal analysis (DTA)/thermogravimetry (TG). The PL spectra show that the 478 and 572 nm maximum emission bands are attributed, respectively, to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions.  相似文献   

13.
We have measured the thermal conductivity of unannealed and annealed (800 K, 120 h) polycrystalline and single-crystal PbTe samples at temperatures from 80 to 303 K, evaluated the electronic and lattice components of their thermal conductivity, and determined the thermal resistivity due to structural defects, whose concentration in the unannealed single-crystal samples reaches ∼1017 cm−3. The results demonstrate that the thermal resistivity of the unannealed polycrystalline and single-crystal samples is 9.4 and 1.7 cm K/W, respectively. Annealing eliminates the defects, thereby increasing the lattice thermal conductivity of the material.  相似文献   

14.
Solution-processable conducting polymers (CPs) are a compelling alternative to inorganic counterparts because of their potential for tuning chemical properties and creating flexible organic electronics. CPs, which typically comprise either only an electron donor (D) or its alternative combinations with an electron acceptor (A), exhibit charge transfer behavior between the units, resulting in an electrical conductivity suitable for utilization in electronic devices and for energy storage applications. However, the energy storage behavior of CPs with a sequence of electron acceptors (A–A), has rarely been investigated, despite their promising lower band gap and higher charge carrier mobility. Utilizing the aforesaid concept herein, four CPs featuring benzodithiophenedione (BDD), and diketopyrrolepyrrole (DPP) are synthesized. Among them, the BDDTH-DPPEH polymer exhibited the highest specific capacitance of 126.5 F g−1 at a current density of 0.5 A g−1 in an organic electrolyte over a wide potential window of −0.6–1.4 V. Notably, the supercapacitor properties of the polymeric electrode materials improved with increasing conjugation length by adding thiophene donor units and shortening the alkyl chain lengths. Furthermore, a symmetric supercapacitor device fabricated using BDDTH-DPPEH exhibited a high-power density of 4000 W kg−1 and an energy density of 31.66 Wh kg−1.  相似文献   

15.
β-Ag2Te has attracted considerable attention in the application of electronics and optoelectronics due to its narrow bandgap, high mobility, and topological insulator properties. However, it remains a significant challenge to synthesize 2D Ag2Te because of the non-layered structure of Ag2Te. Herein, the synthesis of large-size, ultrathin single crystal topological insulator 2D Ag2Te via the van der Waals epitaxial method for the first time is reported. The 2D Ag2Te crystal exhibits p-type conduction behavior with high carrier mobility of 3336 cm2 V−1 s−1 at room temperature. Taking advantage of the high mobility and perfect electron structure of Ag2Te, the Ag2Te/WSe2 heterojunctions are fabricated via mechanical stacking and show an ultrahigh rectification ratio of 2 × 105. Ag2Te/WSe2 photodetector also exhibits self-driven properties with a fast response speed (40 µs/60 µs) in the near-infrared region. High responsivity (219 mA W−1) and light ON/OFF ratio of 6 × 105 are obtained under the photovoltaic mode. The overall performance of the Ag2Te/WSe2 photodetector is significantly competitive among all reported 2D photodetectors. These results indicate that 2D Ag2Te is a promising candidate for future electronic and optoelectronic applications.  相似文献   

16.
Organic–inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long-term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase-stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br), the amount of Br is regulated, leading to high power conversion efficiency. As a result, MA-free perovskite solar cells achieve remarkable long-term stability and a PCE of 20.50%, which is one of the best results for MA-free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs.  相似文献   

17.
BaTiO3:Eu (BT:Eu) thin films were deposited onto quartz substrates by RF magnetron sputtering. The effect on structural, morphological, optical and photoluminescence (PL) properties in the films with different Eu concentrations (0–5 wt%) were investigated. The X-ray diffraction (XRD) pattern of the undoped BT thin film revealed a tetragonal (T) phase with orientations along (101) plane. From XRD pattern, the crystallinity of the films increased with increase in Eu concentration. The SEM images revealed that the films exhibited tetragonal shape, crack free and good adherence to the substrate. Atomic force microscopy studies showed an increase of grain growth with doping concentration. The rms roughness value increased with increase in Eu concentration and the film surface revealed positive skewness and high value of kurtosis which make them suitable for tribological applications. X-ray photoelectron spectroscopy revealed the presence of barium, titanium, europium and oxygen in BT:Eu film. An average transmittance of >80 % (in visible region) was observed for all the films. Optical band gap of Eu doped BT films decreased from 3.86 to 3.53 eV. Such films with optical properties such as high transparency, decrease in band gap and high refractive index are suitable for optoelectronic applications. PL properties showed a sharp line at 625 nm and a broad line at 552 nm due to europium (Eu3+) transitions. PL phenomena were observed, owing to the electronic structure of Eu3+ ions as well as BT nanocrystallites in the films. The sharp and intense red luminescence is useful for photoelectric devices and optical communications.  相似文献   

18.
In this work, high‐efficiency nonfullerene polymer solar cells (PSCs) are developed based on a thiazolothiazole‐containing wide bandgap polymer PTZ1 as donor and a planar IDT‐based narrow bandgap small molecule with four side chains (IDIC) as acceptor. Through thermal annealing treatment, a power conversion efficiency (PCE) of up to 11.5% with an open circuit voltage (V oc) of 0.92 V, a short‐circuit current density (J sc) of 16.4 mA cm?2, and a fill factor of 76.2% is achieved. Furthermore, the PSCs based on PTZ1:IDIC still exhibit a relatively high PCE of 9.6% with the active layer thickness of 210 nm and a superior PCE of 10.5% with the device area of up to 0.81 cm2. These results indicate that PTZ1 is a promising polymer donor material for highly efficient fullerene‐free PSCs and large‐scale devices fabrication.  相似文献   

19.
《工程(英文)》2020,6(2):178-185
Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics (where RE stands for rare earth) are being investigated as promising thermal barrier coatings (TBCs), and the mechanical properties of RETaO4 have been found to be better than those of RENbO4. In this work, B-site substitution of tantalum (Ta) is used to optimize the thermal and mechanical properties of EuNbO4 fabricated through a solid-state reaction (SSR). The crystal structure is clarified by means of X-ray diffraction (XRD) and Raman spectroscopy; and the surface microstructure is surveyed via scanning electronic microscope (SEM). The Young’s modulus and the thermal expansion coefficient (TEC) of EuNbO4 are effectively increased; with respective maximum values of 169 GPa and 11.2 × 10−6 K−1 (at 1200 °C). The thermal conductivity is reduced to 1.52 W·K−1·m−1 (at 700 °C), and the thermal radiation resistance is improved. The relationship between the phonon thermal diffusivity and temperature was established in order to determine the intrinsic phonon thermal conductivity by eliminating the thermal radiation effects. The results indicate that the thermal and mechanical properties of EuNbO4 can be effectually optimized via the B-site substitution of Ta, and that this proposed material can be applied as a high-temperature structural ceramic in future.  相似文献   

20.
Lattice distortion induced by residual stresses can alter electronic and mechanical properties of materials significantly. Herein, a novel way of the bandgap tuning in a quantum dot (QD) by lattice distortion is presented using 4‐nm‐sized CdS QDs grown on a TiO2 particle as an application example. The bandgap tuning (from 2.74 eV to 2.49 eV) of a CdS QD is achieved by suitably adjusting the degree of lattice distortion in a QD via the tensile residual stresses which arise from the difference in thermal expansion coefficients between CdS and TiO2. The idea of bandgap tuning is then applied to QD‐sensitized solar cells, achieving ≈60% increase in the power conversion efficiency by controlling the degree of thermal residual stress. Since the present methodology is not limited to a specific QD system, it will potentially pave a way to unexplored quantum effects in various QD‐based applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号