首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method of producing injection molded parts with a foamed structure has been developed. It has been named supercritical fluid‐laden pellet injection molding foaming technology (SIFT). Compared with conventional microcellular foaming technologies, it lowers equipment costs without sacrificing the production rate, making it a good candidate for mass producing foamed injection molded parts. Both N2 and CO2 can be suitably used in this process as the physical blowing agent. However, due to their distinct physical properties, it is necessary to understand the influence of their differences over the process and the outcomes. Comparisons were made in this study between using CO2 and N2 as the blowing agents in terms of the part morphologies, as well as the shelf life and gas desorption process of the gas‐laden pellets. After gaining a good understanding of the SIFT process and the gas‐laden pellets, a novel foam injection molding approach combining the SIFT process with microcellular injection molding was proposed in this study. Both N2 and CO2 can be introduced into the same foaming process as the coblowing agents in a two‐step manner. Using an optimal content ratio for the blowing agents, as well as the proper sequence of introducing the gases, foamed parts with a much better morphology can be produced by taking advantage of the benefits of both blowing agents. In this study, the theoretical background is discussed and experimental results show that this combined approach leads to significant improvements in foam cell morphology for low density polyethylene, polypropylene, and high impact polystyrene using two different mold geometries. POLYM. ENG. SCI., 54:899–913, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Chemical foaming of elastomers is state of the art and preferred to the more complex systems engineering of physical foaming, yet, many commonly used chemical blowing agents often are hazardous. In current investigations, we introduced water bound to carrying substances (silica, carbon black) into elastomer compounds. A stable, reproducible foaming process can be implemented using water as physical blowing agent. In first tests, the average cell diameters in injection molded elastomer parts exceed the average cell diameters of chemically foamed parts. Yet, varied amounts of blowing agent can reduce the cell diameters. Furthermore, nucleating agents and water carriers are being examined to reduce cell diameters and reach cellular structures and mechanical properties of chemically foamed parts. In conclusion, foaming of elastomers with water is a promising. Yet, further examinations have to cover the effect mechanism of foaming and vulcanization as well as continuous processing and compounding. Rear end of an EPDM part foamed with water carried on silica in injection molding process (mold temperature 195 °C, breathing mold opening 2 mm) © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43613.  相似文献   

3.
采用化学发泡一步法模压成型制备了软质PVC发泡材料,研究了发泡剂、泡孔成核剂、改性剂等主要助剂用量对软质PVC发泡材料密度、泡孔结构以及力学性能的影响,并进行了软质PVC发泡材料的配方筛选.结果表明加入吸热发泡剂N能提高发泡体系的发泡效果,降低材料的密度,改善材料的力学性能,当发泡剂AC用量为2份,用量为0.6份时,材料的综合性能优异;当成核剂用量为1份时,体系发泡效果较好;加入粉末NBR不仅能提高发泡材料的断裂伸长率和柔韧性,还可降低发泡材料密度,改善泡孔结构;当NBR用量为20份时,发泡材料密度达到0.44 g/cm3,力学性能优异.  相似文献   

4.
介绍了微孔发泡塑料的定义及优点,阐述并对比了物理微孔发泡和化学微孔发泡等2种微孔发泡注塑成型工艺;详细介绍了近年来微孔发泡注塑技术在工艺优化、开模二次发泡、表面质量改善和力学性能预估等方面的最新研究进展;最后,对微孔发泡注塑技术未来的研究方向进行了展望。  相似文献   

5.
This article presents a new process for producing microcellular injection molded plastic parts using water as the physical blowing agent and micro‐scaled particles as the cell nucleating agents. Distilled water with dissolved salt were fed through the hopper of an injection molding machine at a preset rate and mixed with polycarbonate (PC) in the machine barrel. Microcellular PC tensile bars were then injection molded with different shot volumes, water/salt solution feed rates, and salt concentrations. Tiny salt crystals of 10–20 μm recrystallized during molding acted as nucleating agents in the PC foamed parts. The surface roughness, mechanical properties, and microstructure of the solid and foamed parts were measured and compared with microcellular injection molded parts using supercritical fluid (SCF) nitrogen as the physical blowing agent. At a similar weight reduction of about 10%, the water foamed PC parts have a smooth surface comparable to that of solid injection molded parts. They also possess similar, if not better, mechanical properties compared to SCF nitrogen foamed PC parts. Without the nucleating agent, PC/water foamed parts exhibit much larger and fewer bubbles within the molded parts. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
Microcellular injection molding can fabricate lightweight, dimensionally stable plastic parts while using less material and energy. This article investigates a new process using water vapor as the physical blowing agent and comparing two kinds of nucleating agents, namely, cubic sodium chloride (NaCl) and non‐uniform active carbon (AC). The effects of different nucleating agents on the surface roughness, mechanical properties, and microstructure of solid and foamed parts were characterized. Compared with typical microcellular injection molded parts, water vapor‐foamed polycarbonate (PC)/NaCl had a smooth surface comparable to that of solid parts, whereas foamed PC/AC had desirable specific mechanical properties as well as an attractive average weight reduction of 16.4 wt%. Low density and non‐uniform AC particles, used as a nucleating agent and reinforcement, improved the microcellular structure. Based on PC molecular weight measurement, the melt processing and water vapor‐foaming processes did induce a slight amount of thermal degradation and hydrolytic degradation, respectively. POLYM. ENG. SCI., 55:1634–1642, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
通过添加不同含量的扩链剂(CE)对2种牌号聚乳酸(PLA)进行改性,对改性PLA进行注塑发泡,研究了扩链剂用量对PLA熔体流变性能、试样的泡孔形态和力学性能等的影响,并比较了不同PLA泡沫的泡孔结构和力学性能的差异。结果表明,PLA的熔体流动速率随着扩链剂的加入明显降低,同时熔体强度得到提高;随着扩链剂含量的增多,注塑级和挤出级PLA的发泡效果和力学性能都逐渐提高,扩链剂含量达到0.8 %(质量分数,下同)时,取得最好的泡孔结构和最优的力学性能;改性注塑级发泡试样较改性挤出级发泡试样有更高的力学性能。  相似文献   

8.
Blowing agents are often used in the reaction injection molding process to compensate for the shrinkage that occurs upon polymerization, thereby creating a structural foam part. Controlling the thickness of the solid skin and foamed core is essential to achieve the intended mechanical properties of the molded part. A numerical model was developed to predict the foaming behavior in reaction injection molding. This algorithm employs a novel primitive cell construction to enable it to analyze complex rectangular geometries, including inserts, with a two-dimensional, finite difference solution method. The analysis was applied to foaming of polyurethane in a rectangular cavity. The predicted skin thickness was found to be in good agreement with actual structural foam parts. Foaming as a function of cavity thickness was also treated. The algorithm Is useful for understanding and interpreting nonlinear phenomena of rapid, exothermic polymerizations such as foam formation adjacent to the mold wall or around a metal insert. The results can be used to formulate design guidelines for achieving desired skin/core thicknesses as a function of design, material, and process parameters.  相似文献   

9.
王丹  李庄 《塑料工业》2012,40(4):64-66,122
采用注射成型工艺制备了热塑性弹性体(TPEE)发泡材料。研究了发泡剂用量、发泡温度以及注射压力对TPEE发泡材料性能的影响。采用万能力学试验机和扫描电子显微镜(SEM)分别测试和观察了TPEE发泡材料的力学性能和泡孔结构,并测试了TPEE发泡材料的表观密度。试验结果表明:TPEE发泡材料的材料性能与发泡剂用量之间的关系为非线性关系;一定的发泡温度可以影响发泡材料的表观密度,进而影响材料的力学性能;注射压力在一定程度上影响发泡剂的发泡倍率,对发泡材料的性能以及外观产生一定的影响。在发泡剂用量为4.5份、注射温度185℃、合模时间200 s、注射压力40 MPa、注射速度30 g/s的条件下,能够得到综合性能比较理想的发泡材料。  相似文献   

10.
Cellulose acetate (CA) is a bio‐based polymer suitable to replace foamed polystyrene (PS) in packaging applications. Foam trays can be produced by thermoforming of extruded sheets foamed with physical blowing agents. In this paper, the effects of various process settings and the calibration of the sheet on foam morphology and surface quality of extruded CA sheets are presented. Different contact cooling options were applied in order to investigate their influence on surface roughness, density, and morphology of the sheets. By adjusting cooling parameters, blowing agent formulation, and process settings, smooth foam sheets with a surface roughness below 10 µm and a density in the range of 150 kg m?3 were produced. POLYM. ENG. SCI., 57:441–449, 2017. © 2016 Society of Plastics Engineers  相似文献   

11.
Injection foaming is an method for mass producing lightweight, foamed plastic components with excellent dimensional stability while using less material and energy. In this study, a novel injection foaming method employing supercritical CO2 (scCO2) and water as coblowing agents was developed to produce thermoplastic polyurethane (TPU) components with a uniform porous structure and no solid skin. Various characterization techniques were employed to investigate the cell morphology, crystallization behavior, and static and dynamic mechanical properties of solid injection molded samples, foamed samples using CO2 or water as a single blowing agent, and foamed samples using both CO2 and water as coblowing agents. When compared with CO2 foamed samples, samples produced by the coblowing method exhibited much more uniform cell morphologies without a noticeable reduction in mechanical properties. Moreover, these TPU samples had almost no skin layer, which permitted the free transport of nutrients and waste throughout the samples. Such a mass‐produced, skin‐free structure is desirable in tissue engineering. In this study, the biocompatibility of the scaffolds was confirmed and the effect of these blowing agents on the TPU foaming behavior was studied. POLYM. ENG. SCI., 54:2947–2957, 2014. © 2014 Society of Plastics Engineers  相似文献   

12.
阻燃型NBR改性PVC软质泡沫塑料的研制   总被引:9,自引:0,他引:9  
在以聚氯乙烯( PVC)为主体材料、加入丁腈橡胶( NBR)共混改性、用化学交联模压一步法制备改性 PVC泡沫塑料的基础上,选用阻燃型增塑剂氯化石蜡( CP)、阻燃剂 Sb2O3进行阻燃型 NBR改性 PVC软质泡沫塑料的制备研究。结果表明,当用 PVC 100份 (质量份,下同 )、 NBR 60份、邻苯二甲酸二辛酯 30份、 CP 30份、 Sb2O3 8份、偶氮二甲酰胺 4.0份、 N,N′-二亚硝基五次甲基四胺 4.0份、过氧化二异丙苯 1.0份及适量稳定剂时,可使 NBR改性 PVC软质泡沫塑料的氧指数达到 27.0%,综合力学性能较好。电镜分析表明,阻燃型 NBR改性 PVC软质泡沫塑料的泡孔分布均匀性不如非阻燃型同类产品的好。  相似文献   

13.
This paper describes plastic foam processing for the manufacture of LLDPE foams in rotomolding. In order to better understand the mechanisms of foaming, a fundamental study on the foaming process in rotomolding has been conducted. First, the decomposition behavior of the chemical blowing agents was studied by a thermogravimetric analyzer (TGA). The zero-shear viscosity of LLDPEs was measured using a rotational stress rheometer. Also, an optical microscope with a hot stage was used to study cell nucleation, growth, coalescence, and coarsening in LLDPE melts, which provide an improved understanding of the foaming dynamics with a chemical blowing agent in rotational molding. Finally, the actual foaming behavior in rotomolding has also been studied. The experimental results indicate that the amount of blowing agent, the heating time, and the processing temperature play important roles in determining the cell morphology in rotational foam molding.  相似文献   

14.
介绍了一种新型的发泡成型技术———滚塑发泡成型技术。该技术既继承了传统滚塑成型的众多优点,同时又具有其独有的特点,即:具有发泡的芯层的同时又有光滑的表面,能大大提高产品的力学性能,弥补传统滚塑成型技术的缺点。主要从滚塑发泡成型技术的发展历程、工艺流程、加工原理、影响因素以及技术特点等几个方面,详细地介绍了如何利用滚塑发泡成型技术加工具有非发泡外壳和发泡内芯的塑料制品,并且着重介绍了一步法滚塑发泡成型工艺原理及影响因素,展望了滚塑发泡成型未来的发展方向。  相似文献   

15.
This work explores the influence of a chemical blowing agent on different aspects of producing a short glass‐fiber‐reinforced polypropylene foam, examining the rheology of the system, the developed morphology of the part, and the resulting mechanical properties. Two different forms of an endothermic blowing agent, namely powder versus masterbatch, were compared to determine their effects on the process history and properties of an injection molded part. Samples were produced on an injection molding machine between 230 and 270°C using the low‐pressure foaming technique. Rheology of the resulting plasticized melt by the two different blowing agents was measured on an in‐line rheometer, showing a greater reduction in shear viscosity for the masterbatch additive, which correspondingly reduced the extent of fiber breakage observed. The final molded samples were analyzed for their foam structure (i.e., cell size, cell density, and skin thickness) as well as the properties of the glass fibers incorporated (namely, fiber length distribution). Tensile properties were found to diminish with increasing blowing agent content, though differences were observed based on the type of CBA used despite the similarities in foam structure produced. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4696–4706, 2006  相似文献   

16.
为了研究微孔发泡在大型塑件中的应用问题,以汽车仪表板骨架塑件为例,利用Moldflow软件模拟分析微孔发泡注塑和传统注塑成型。结果表明,微孔发泡注射成型在注塑时间、注塑压力、体积收缩和翘曲变形等方面均好于传统注塑成型。通过对塑件泡孔形貌、密度、孔隙率、力学强度、表面粗糙度等性能的检测,研究微孔发泡实际应用问题。检测结果表明,微孔发泡能够有效实现产品减重,且产品力学性能优于传统注塑,但表面粗糙度较传统注塑差,汽车外观零件如采用微孔发泡成型须经过表面处理来改善表面缺陷。  相似文献   

17.
注塑成型低发泡PP的研究   总被引:1,自引:1,他引:0  
采用注塑成型工艺制备了聚丙烯(PP)低发泡材料,分别探讨了发泡剂、交联剂用量及填料对PP发泡材料拉伸强度、缺口冲击强度、硬度、密度及热变形温度等性能的影响,并用扫描电子显微镜(SEM)对泡孔结构进行了观察。结果表明:当发泡剂用量为0.5phr,交联剂用量为0.05phr及CaSO4填充母料用量为10phr时,PP低发泡材料的综合性能最佳。  相似文献   

18.
王旭  常素芹  冯钠  戚晓霞 《弹性体》2013,23(1):58-64
分别采用一段和两段模压法制备了以顺丁橡胶(BR)/丁苯橡胶(SBR)/天然橡胶(NR)为基体的橡胶发泡材料,研究了三种化学发泡剂N,N'-二甲基戊次甲基四胺(H)、4,4'-氧代双(苯磺酰肼)(OBSH)以及H/OBSH(质量比1:1)复配对发泡及硫化特性的影-向,以及3种发泡剂和2种成型工艺对收缩率及相结构的影响。结果表明,发泡剂H对硫化性能影响最大,含发泡剂H的混炼胶在分解过程中释放的热量最多;加入3种发泡剂都具有一种较大的泡孔镶嵌在较小的泡孔丛中的泡孔形态;密度和线收缩率均随着时间的增加而增加,经H/OBSH复配的发泡剂更适合该体系成型,材料线收缩率均比单独使用H和OBSH小,两段模压法可以有效地提高发泡材料的尺寸稳定性,收缩率降低至3.88%,同时发泡剂使用率最多可提高31.67%。  相似文献   

19.
A new thermally expandable microcapsule was developed for use with foaming polypropylene (PP) by injection molding and extrusion processes at operating temperatures above 200°C. The microcapsule consists of a blowing agent as the core and a shell polymer. The rheological properties of the shell polymer were controlled by a crosslinking agent to design the expandability and shrinkage. The effects of rheological properties on the expandability and the surface appearance of foam products were thoroughly investigated. It was found that storage modulus G′ and tan δ significantly affected the expandability and shrinkage and were controllable through crosslinking polymerization. Visual observation of batch foaming, rheological measurement, and experiments of foam injection molding and extrusion elucidated the existence of the optimal degree of crosslinking that could realize more than 30% density reduction while maintaining a smoothsurface at PP foam injection molding and extrusion. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
Rotational molding of foamed polyethylene has increasingly become an important process in industry because of its thicker walls, low sound transfer, high stiffness and good thermal insulation. However, the foaming process of polyethylene during rotational molding has not been well studied. The focus of this article is to assess the rotomoldability of foamed polyethylene and to investigate how blowing agents can influence the process of rotational molding and the final product quality. Rotational molding experiments were carried out in a laboratory scale uniaxial machine capable of measuring internal mold temperature in the cycle. Mechanical property tests, as well as thickness distribution and density measurements, were performed on the rotationally molded parts. Differential scanning calorimetry and optical microscopy have also been employed to identify the material and structural parameters. It was found that the presence of blowing agent results in an improvement of the impact properties, which are counteracted by longer cycle times and uneven surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号