首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of carbon fibers has a great influence on the mechanical properties of hollow glass microsphere (HGM)–epoxy syntactic foam. Thus, to elucidate the reinforcement mechanism, the numerical simulation of HGM- and carbon-fiber-filled epoxy matrixes was carried out. The effect of the orientation of carbon fibers on the elastic modulus and stress distribution was studied. The effect of the elastic modulus of the matrix on the change of force was also studied. We noted that the orientation of carbon fibers affected the elastic modulus of the matrix, and when the carbon fibers were distributed in the direction of force, the elastic modulus of the matrix reached its maximum. The maximum stress of HGMs decreased with increasing matrix elastic modulus, and the mechanical properties of the syntactic foam increased with increasing elastic modulus of the matrix. When the carbon fibers were distributed in the direction of the force, the enhancement effect was the best. Because the carbon fibers had a higher elastic modulus than the matrix, the degree of compressive deformation of the carbon fibers was smaller than that of the matrix. During compression, carbon fibers were pulled out and consumed a lot of energy. Thus, the mechanical properties of the syntactic foam were improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47083.  相似文献   

2.
Multiwall carbon nanotubes (MWCNTs) were amino‐functionalized by 1,2‐ethylenediamine (EDA)' triethylenetetramine (TETA), and dodecylamine (DDA), and investigated by fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The dispersion of the DDA functionalized MWCNT in DMF is better than that of the MWCNT functionalized by the EDA and the TETA. Carbon nanotubes reinforced epoxy resin composites were prepared, and the effect of the amino‐functionalization on the properties of the composites was investigated by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and TGA. The composites reinforced by the MWCNTs demonstrate improvement in various mechanical properties. The increase of Tg of the composites with the addition of amino‐functionalized MWCNT compared to the Tg of the composites with the addition of unfunctionalized MWCNT was due to the chemical combination and the physical entanglements between amino group from modified MWNTs and epoxy group from the epoxy resin. The interfacial bonding between the epoxy and the amino group of the EDA and the TETA‐modified MWCNT is more important than the well dispersion of DDA‐modified MWCNT in the composites for the improvement of the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Surface functionalization of multiwall carbon nanotubes (MWCNTs) was carried out by introducing a ylide group containing anchored phenol structures. Epoxy nanocomposites filled with modified and pristine carbon nanotubes were prepared, and their mechanical, electrical, and thermal properties were evaluated. Mechanical properties such as tensile strengths and Young’s moduli of the epoxy nanocomposites increased significantly with the addition of the modified MWCNTs compared to the pristine MWCNTs, due to the strong interaction between the modified MWCNTs and the epoxy matrix. Scanning electron microscopy of the fractured epoxy systems revealed that the functionalized MWCNTs were finely dispersed in the matrix, as opposed to the pristine carbon nanotubes. The epoxy/functionalized MWCNT nanocomposite had a lower surface electrical resistance than the epoxy/pristine MWCNT nanocomposite, confirming the effect of functionalization.  相似文献   

4.
The effect of nitric acid mild functionalized multiwalled carbon nanotubes (MWCNTs) on electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites was examined. MWCNTs were oxidized by concentrated nitric acid under reflux conditions, with different reaction times. The dispersion of MWCNTs after functionalization was improved due to the presence of oxygen functional groups on the nanotubes surface. Functionalization at 2 h exhibits the highest EMI SE and electrical conductivity of MWCNTs filled epoxy composites. However, EMI shielding performance of MWCNTs filled epoxy composite declined when the functionalization reaction time was prolonged. This was due to extensive damage on the MWCNT structure, as verified by a Raman spectroscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42557.  相似文献   

5.
In this study, the effect of diamine molecular structure, attached to the multiwalled carbon nanotubes (MWCNTs), on the interfacial interactions of the MWCNTs and the epoxy matrix was studied. Pristine MWCNTs were successfully functionalized with multiple aliphatic and aromatic diamines. It has been found that, compared to aliphatic molecules, aromatic diamines can yield higher functionalization degree, due to higher activity and longer half‐life of aromatic intermediates. However, at the same functionalization degree, the aliphatic ligands were more successful in reacting with epoxy chains and forming covalent bonds between the MWCNTs and the matrix. Considerable improvements were achieved in the mechanical properties of functionalized MWCNT‐reinforced epoxy composites in comparison with the pristine MWCNT‐reinforced composites. Fractography observations revealed distinct differences in the failure modes of reinforced composites after functionalization of the MWCNTs with diamines. POLYM. ENG. SCI., 59:1905–1910, 2019. © 2019 Society of Plastics Engineers  相似文献   

6.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with aminosilanes via an aqueous deposition route. The size and morphology of siloxane oligomers grafted to the MWCNTs was tuned by varying the silane functionality and concentration and their effect on the properties of a filled epoxy system was investigated. The siloxane structure was found to profoundly affect the thermo-mechanical behavior of composites reinforced with the silanized MWCNTs. Well-defined siloxane brushes increased the epoxy Tg by up to 19 °C and significantly altered the network relaxation dynamics, while irregular, siloxane networks grafted to the MWCNTs had little effect. The addition of both types of silanized MWCNTs elicited improvements in the strength of the nanocomposites, but only the well-defined siloxane brushes engendered dramatic improvements in toughness. Because the silanization reaction is simple, rapid, and performed under aqueous conditions, it is also an industrially attractive functionalization route.  相似文献   

7.
Diethyltoluenediamines (DETDA) was grafted to single‐walled carbon nanotubes (SWNTs) through diazonium‐based addition for improving dispersion and interfacial bonding in SWNT/epoxy nanocomposites. Characterization results of Fourier Transformed Infrared spectroscopy and Raman spectroscopy validated covalent bonding between DETDA and carbon nanotubes. The degree of functionalization was about 4% based on thermo‐gravimetric analysis. Interfacial bonding strength was computed in the presence of chemical bonding and the computation results indicated that the interfacial shear strength in the presence of functionalized carbon nanotubes was significantly enhanced. The experimental test revealed that the tensile strength of nanocomposites was enhanced about 23% and Young's modulus about 25%, with 0.5 wt% loading of functionalized‐nanotubes. These considerable improvements further verified the load‐transfer enhancement in the functionalized‐SWNTs/epoxy nanocomposites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
The effect of the functionalization of multi-wall carbon nanotubes (MWCNTs) on the structure, the mechanical and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs or COOH-functionalized carbon nanotubes (MWCNT–COOH) were prepared and characterized. Dynamic-mechanical thermal analysis shows that the storage modulus increases with the addition of MWCNTs, whereas a constant value or even a weak reduction was observed for functionalized nanotubes. Two phases were suggested in the composites with MWCNT–COOH, both by dynamic-mechanical properties and by water transport. Chemical functionalization of MWCNTs increases the compatibility with the epoxy matrix due to the formation of an interface with stronger interconnections. This, in turn, causes a significant decrease in the electrical conductivity of this type of composite with respect to the untreated MWCNTs which can be explained in terms of tunnelling resistance between interacting nanotubes.  相似文献   

9.
The effects of poly(vinyl butyral) (PVB) and acid‐functionalized multiwalled carbon nanotube modification on the thermal and mechanical properties of novolac epoxy nanocomposites were investigated. The nanocomposite containing 1.5 wt % PVB and 0.1 wt % functionalized carbon nanotubes showed an increment of about 15°C in the peak degradation temperature compared to the neat novolac epoxy. The glass‐transition temperature of the novolac epoxy decreased with increasing PVB content but increased with an increase in the functionalized carbon nanotube concentration. The nanocomposites showed a lower tensile strength compared to the neat novolac epoxy; however, the elongation at break improved gradually with increasing PVB content. Maximum elongation and impact strength values of 7.4% and 17.0 kJ/m2 were achieved in the nanocomposite containing 1.5 wt % PVB and 0.25 wt % functionalized carbon nanotubes. The fractured surface morphology was examined with field emission scanning electron microscopy, and correlated with the mechanical properties. The functionalized carbon nanotubes showed preferential accumulation in the PVB phase beyond 0.25 wt % loading. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43333.  相似文献   

10.
Three different types of epoxy-functionalized multi-walled carbon nanotubes (EpCNTs) were prepared by multiple covalent functionalization methods. The EpCNTs were characterized by thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), and Raman spectroscopy to confirm covalent functionalization. The effect of the different chemistries on the adhesive properties was compared to a neat commercial epoxy (Hexion formulation 4007) using functionalized and unfunctionalized multi-walled carbon nanotubes (MWCNT) at 0.5, 1, 2, 3, 5, and 10 wt%. It was found that an EpCNT at 1 wt% increased the lap shear strength, tested using the American Society for Testing and Materials standard test D1002, by 36% over the unfilled epoxy formulation and by 27% over a 1 wt% unmodified MWCNT control sample. SEM images revealed a fracture surface morphology change with the incorporation of EpCNT and a deflection of the crack fronts at the site of embedded CNTs, as the mechanism accounting for increased adhesive strength. Rheological studies showed non-linear viscosity and DSC cure studies showed an alteration of cure kinetics with increased CNT concentration, and these effects were more pronounced for EpCNT.  相似文献   

11.
This work analyzes the morphology and behavior of hybrid composites reinforced with carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). In order to avoid the weak interface of laminar nanofillers, GNPs were functionalized with amine groups. Different tendencies were observed as a function of the measured property. Storage modulus showed a synergic trend, being the stiffness of hybrid CNT/GNP/epoxy composites higher than the corresponding ones measured in neat epoxy composites reinforced with CNTs or GNPs. In contrast, the thermal and electrical conductivity increased with the nanofiller addition, the final value of the mentioned properties in the hybrid composites was strongly influenced by specific graphitic nanofiller. Neat GNP/epoxy composites showed the highest thermal conductivity, while neat CNT/epoxy composites presented the highest electrical conductivity. This behavior is explained by the observed morphology. All composites exhibited a suitable nanofiller dispersion. However, on hybrid GNP/CNT/epoxy composites, CNTs tend to be placed between nanoplatelets, forming bridges between nanoplatelets. This morphology implies a less effective electrical network, limiting the synergic effect in the properties, which requires percolation. In spite of this, the hybrid GNP/CNT/epoxy composites showed a better combination of properties than the neat composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46475.  相似文献   

12.
In this research, poly(L ‐lactide‐co‐ε‐caprolactone) (PLACL) reinforced with well‐dispersed multiwalled carbon nanotubes (MWCNTs) nanocomposites were prepared by oxidization and functionalization of the MWCNT surfaces using oligomeric L ‐lactide (LA) and ε‐caprolactone (CL). It is found that the surface functionalization can effectively improve the dispersion and adhesion of MWCNTs in PLACL. The surface functionalization will have a significant effect on the physical, thermomechanical, and degradation properties of MWCNT/PLACL composites. The tensile modulus, yield stress, tensile strength, and elongation at break of composite increased 49%, 60%, 70%, and 94%, respectively, when the concentration of functionalized MWCNTs in composite is 2 wt %. The in vitro degradation rate of nanocomposites in phosphate buffer solution increased about 100%. The glass transition temperature (Tg) of composites was decreased when the concentration of functionalized MWCNTs is 0.5 wt %. With further increasing the concentration of functionalized MWCNTs, the Tg was increased. The degradation kinetics of nanocomposites can be engineered and functionalized by varying the contents of pristine or functionalized MWCNTs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
This article presents synthesis and mechanical characterization of carbon nanotube (CNT)‐reinforced syntactic foams. Following a dispersion approach (comprising ultrasonic, calendering, and vacuum centrifugal mixing), single‐ and multi‐walled functionalized CNTs (FCNTs) were incorporated into two foam composites containing various commercially available microballoon grades (S38HS, S60HS, and H50 from 3M). The FCNT‐reinforced composites were tested for compressive strength and apparent shear strength before and after hot/wet conditioning. The results showed that the FCNT‐reinforced composites' mechanical properties depended on the vacuum pressure used during processing. Compared with pristine and commercially available syntactic foam (EC‐3500 from 3M), the FCNT‐reinforced composites processed at high vacuum (0.2 kPa) showed significant increase in compressive strength and apparent shear strength before and after hot/wet conditioning. Dynamic mechanical analysis showed an increase of about 22°C in glass transition temperature for composites processed at high vacuum with 0.5 wt % FCNT and 45 wt % S38HS–5 wt % S60HS microballoons. Thermogravimetric analysis indicated water absorption and lower decomposition temperature for the FCNT‐reinforced composite mixed at atmospheric pressure, whereas no significant change was observed for the compound processed at high vacuum. Fracture analysis showed matrix failure for the composite processed at high vacuum and microballoon crushing for the composite mixed at atmospheric pressure. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Epoxy resin nanocomposites reinforced with three different ionic liquid functionalized carbon nanotubes (f-CNTs) were fabricated by an in situpolymerization method. The influence of the anions on the curing process was studied through differential scanning calorimetry (DSC) and normalized Fourier transform infrared (FTIR) spectroscopy. The composition of the nanocomposites was analyzed by X-ray photoelectron spectroscopy. Two different mechanisms are proposed to explain the curing process of the neat epoxy and its composites. The electric conductivity and mechanical properties of the nanocomposites are also reported. The tensile strength was increased dramatically due to the insertion of f-CNTs. Scanning electron microsopy fracture surface analysis indicates a strong interfacial bonding between the carbon nanotubes and the polymer matrix.  相似文献   

15.
Carbon nanofillers like nanotubes and nanofibers have been used to reinforce various epoxy systems. The incorporation of carbon nanofillers into a thermosetting epoxy system enhanced the thermal and mechanical properties of the epoxy system. The best performance of an epoxy nanocomposite system with carbon nanofillers would be resulted from the homogeneous dispersion of the nanofillers and strong interfacial adhesion between the epoxy matrix and the nanofillers. Therefore, amine‐functionalization of carbon nanofibers (CNFs) and multiwalled carbon nanotubes (MWNTs) was carried out via treating them with 4‐aminobenzoic acid in polyphosphoric acid. FTIR spectroscopy, XPS, TGA, and FE‐SEM analyses confirmed that the functionalization was successful. Curing behavior and thermo‐physical properties of the nanocomposites comprising the pristine or functionalized carbon nanofillers were investigated and compared with each other. Fractured surfaces of the nanocomposites were investigated by FE‐SEM. The functionalized MWNTs induced stronger interfacial adhesion than the functionalized CNFs and resulted in considerable improvement in the physical properties of the epoxy nanocomposites. POLYM. COMPOS., 31:1449–1456, 2010. © 2009 Society of Plastics Engineers  相似文献   

16.
The study aims to produce poly(methyl methacrylate) (PMMA)-based lower density syntactic foams with hollow glass microspheres (HGMs) and to improve their mechanical properties by the addition of polyhedral oligomeric silsesquioxanes (POSSs) while maintaining the thermal properties of the neat polymer. First to understand the effect of POSS addition, PMMA–POSS composites with octaisobutyl and octaphenyl POSS were produced through extrusion. Higher relative flexural and impact strengths were obtained with POSS addition to PMMA. Obtaining more enhanced properties with octaphenyl POSS, PMMA-HGM-POSS hybrid syntactic foams were prepared with this additive. In general, the specific flexural strength and modulus of the PMMA syntactic foams were improved with the POSS loading, while the lower density and thermal properties of the PMMA syntactic foams were maintained. PMMA hybrid syntactic foams with 15 wt % HGMs and 0.25 wt % POSS exhibited 37.6% improvement in the specific flexural modulus with respect to the neat PMMA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48368.  相似文献   

17.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

18.
The functionalization of multi-walled carbon nanotubes by ascorbic acid (vitamin C) was carried out. Then, functionalized multi-walled carbon nanotubes were dispersed throughout a poly(amide–imide) matrix by ex situ technique with 5, 10, and 15% loading by weight. The composite hybrid films were prepared by a solvent casting method. It was found that the functionalization of multi-walled carbon nanotubes could improve their dispersion and interfacial adhesion to the poly(amide–imide) matrix as proved by field emission scanning and transmission electron microscopy techniques. The modulus, tensile strength, and the thermal stability of the composites were improved in spite of excellent multi-walled carbon nanotube dispersion in the matrix.  相似文献   

19.
Erwin M. Wouterson  Xiao Hu 《Polymer》2007,48(11):3183-3191
This paper examines the effect of the fiber content and fiber length on tensile, fracture and thermal properties of syntactic foam. Results showed that a hybrid structure demonstrates a significant increase in the ultimate tensile strength, σuts, and Young's modulus, E, with increasing fiber loading. Interestingly, the fracture toughness, KIc, and energy release rate, GIc, increased by 95% and 90%, respectively, upon introduction of 3 wt% short carbon fibers in syntactic foam, indicating the potent toughening potential for short carbon fibers in syntactic foam systems. SEM and OM studies identified the presence of several toughening mechanisms. An estimate of the contribution from each toughening mechanism by composite theory and fractography revealed that the specific energy required to create new surfaces was enhanced by the presence of fibers and was the main contributor to the toughness of the short fiber reinforced syntactic foam.  相似文献   

20.
Experimental results are presented for nanocomposite foams based on unplasticized poly(vinyl chloride)/(wood flour)/(multi‐wall carbon nanotubes) (PVC/WF/MWCNTs). The nanocomposite samples were prepared in an internal mixer and foamed via a batch processing method using compression molding. Nanoparticles were functionalized by sodium hypochlorite solution, and the functionalization process was monitored by Fourier‐transform infrared spectroscopy. The effects of MWCNTs (both neat and functionalized) and blowing agent concentration on the morphological properties (cell size and cell density) and mechanical properties (tensile and flexural strength) of the foam samples were studied. The results revealed that foam cell sizes decreased and cell densities increased with addition of MWCNTs. The dispersion of nanoparticles in the PVC medium was increased by functionalization, and the morphological properties of the foams containing functionalized nanoparticles were improved. Density of nanocomposite foams decreased more with functionalized MWCNTs as compared to other samples. Chemical blowing agent concentration had no significant effect on sample density. Mechanical properties of the samples were improved by using functionalized MWCNTs in comparison with those of foams without this component. J. VINYL ADDIT. TECHNOL., 18:161–167, 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号