首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
2D atomic sheets of transition metal dichalcogenides (TMDs) have a tremendous potential for next‐generation optoelectronics since they can be stacked layer‐by‐layer to form van der Waals (vdW) heterostructures. This allows not only bypassing difficulties in heteroepitaxy of lattice‐mismatched semiconductors of desired functionalities but also providing a scheme to design new optoelectronics that can surpass the fundamental limitations on their conventional semiconductor counterparts. Herein, a novel 2D h‐BN/p‐MoTe2/graphene/n‐SnS2/h‐BN p–g–n junction, fabricated by a layer‐by‐layer dry transfer, demonstrates high‐sensitivity, broadband photodetection at room temperature. The combination of the MoTe2 and SnS2 of complementary bandgaps, and the graphene interlayer provides a unique vdW heterostructure with a vertical built‐in electric field for high‐efficiency broadband light absorption, exciton dissociation, and carrier transfer. The graphene interlayer plays a critical role in enhancing sensitivity and broadening the spectral range. An optimized device containing 5?7‐layer graphene has been achieved and shows an extraordinary responsivity exceeding 2600 A W?1 with fast photoresponse and specific detectivity up to ≈1013 Jones in the ultraviolet–visible–near‐infrared spectrum. This result suggests that the vdW p–g–n junctions containing multiple photoactive TMDs can provide a viable approach toward future ultrahigh‐sensitivity and broadband photonic detectors.  相似文献   

3.
4.
High operating temperature (HOT) broadband photodetectors are urgently necessary for extreme condition applications in infrared-guided missiles, infrared night vision, fire safety imaging, and space exploration sensing. However, conventional photodetectors show dramatic carrier mobility decreases and carrier losses with low photoresponsivity at HOT due to the increased carrier scattering in channels at high temperatures. Herein, the HOT broadband photodetectors from room temperature to 470 K are developed for the first time by large-area black phosphorus (BP)/PtSe2 films device arrays via a depletion-enhanced photocarrier dynamics strategy. Attributed to the 2D Schottky junction at BP/PtSe2 interface and resulting in full depleted working channels, the BP/PtSe2 photodetector arrays exhibit high tolerance to carrier mobility decrease during the increasing operating temperature in a wide wavelength range from 532 to 2200 nm. Thus, the photodetector shows a state-of-the-art operating temperature at 470 K with the photo-responsivity (R) and specific detectivity (D*) of 25 A W−1 and 6.4 × 1011 Jones under 1850 nm illumination, respectively. Moreover, BP/PtSe2 photodetector arrays show high-uniformity photo-response in a large area. This work provides new strategies for high-performance broadband photodetector arrays with HOT by Schottky junction of large-area BP/PtSe2 films.  相似文献   

5.
Perovskite-based photodetectors exhibit potential applications in communication, neuromorphic chips, and biomedical imaging due to their outstanding photoelectric properties and facile manufacturability. However, few of perovskite-based photodetectors focus on ultraviolet-visible-short-wavelength infrared (UV–Vis–SWIR) broadband photodetection because of the relatively large bandgap. Moreover, such broadband photodetectors with individual nanocrystal channel featuring monolithic integration with functional electronic/optical components have hardly been explored. Herein, an individual monocrystalline MAPbBr3 nanoplate-based photodetector is demonstrated that simultaneously achieves efficient UV–Vis–SWIR detection and fast-response. Nanoplate photodetectors (NPDs) are prepared by assembling single nanoplate on adjacent gold electrodes. NPDs exhibit high external quantum efficiency (EQE) and detectivity of 1200% and 5.37 × 1012 Jones, as well as fast response with rise time of 80 µs. Notably, NPDs simultaneously achieve high EQE and fast response, exceeding most perovskite devices with multi-nanocrystal channel. Benefiting from the high specific surface area of nanoplate with surface-trap-assisted absorption, NPDs achieve high performance in the near-infrared and SWIR spectral region of 850–1450 nm. Unencapsulated devices show outstanding UV-laser-irradiation endurance and decent periodicity and repeatability after 29-day-storage in atmospheric environment. Finally, imaging applications are demonstrated. This work verifies the potential of perovskite-based broadband photodetection, and stimulates the monolithic integration of various perovskite-based devices.  相似文献   

6.
7.
8.
Rapidly evolving group-10 transition metal dichalcogenides (TMDCs) offer remarkable electronic, optical, and mechanical properties, making them promising candidates for advanced optoelectronic applications. Compared to most TMDCs semiconductors, group-10-TMDCs possess unique structures, narrow bandgap, and influential physical properties that motivate the development of broadband photodetectors, specifically infrared photodetectors. This review presents the latest developments in the fabrication of broadband photodetectors based on conventional 2D TMDCs. It mainly focuses on the recent developments in group-10 TMDCs from the perspective of the lattice structure and synthesis techniques. Recent progress in group-10 TMDCs and their heterostructures with different dimensionality of materials-based broadband photodetectors is provided. Moreover, this review accounts for the latest applications of group-10 TMDCs in the fields of nanoelectronics and optoelectronics. Finally, conclusions and outlooks are summarized to provide perspectives for next-generation broadband photodetectors based on group-10 TMDCs.  相似文献   

9.
10.
11.
2D perovskites, due to their unique properties and reduced dimension, are promising candidates for future optoelectronic devices. However, the development of stable and nontoxic 2D wide-bandgap perovskites remains a challenge. 2D all-inorganic perovskite Sr2Nb3O10 (SNO) nanosheets with thicknesses down to 1.8 nm are synthesized by liquid exfoliation, and for the first time, UV photodetectors (PDs) based on individual few-layer SNO sheets are investigated. The SNO sheet-based PDs exhibit excellent UV detecting performance (narrowband responsivity = 1214 A W−1, external quantum efficiency = 5.6 × 105%, detectivity = 1.4 × 1014 Jones @270 nm, 1 V bias), and fast response speed (trise ≈ 0.4 ms, tdecay ≈ 40 ms), outperforming most reported individual 2D sheet-based UV PDs. Furthermore, the carrier transport properties of SNO and the performance of SNO-based phototransistors are successfully controlled by gate voltage. More intriguingly, the photodetecting performance and carrier transport properties of SNO sheets are dependent on their thickness. In addition, flexible and transparent PDs with high mechanical stability are easily fabricated based on SNO nanosheet film. This work sheds light on the development of high-performance optoelectronics based on low-dimensional wide-bandgap perovskites in the future.  相似文献   

12.
Semiconducting 2D materials, such as SnS2, hold immense potential for many applications ranging from electronics to catalysis. However, deposition of few‐layer SnS2 films has remained a great challenge. Herein, continuous wafer‐scale 2D SnS2 films with accurately controlled thickness (2 to 10 monolayers) are realized by combining a new atomic layer deposition process with low‐temperature (250 °C) postdeposition annealing. Uniform coating of large‐area and 3D substrates is demonstrated owing to the unique self‐limiting growth mechanism of atomic layer deposition. Detailed characterization confirms the 1T‐type crystal structure and composition, smoothness, and continuity of the SnS2 films. A two‐stage deposition process is also introduced to improve the texture of the films. Successful deposition of continuous, high‐quality SnS2 films at low temperatures constitutes a crucial step toward various applications of 2D semiconductors.  相似文献   

13.
14.
Photodetection over a broad spectral range is crucial for optoelectronic applications such as sensing, imaging, and communication. Herein, a high‐performance ultra‐broadband photodetector based on PdSe2 with unique pentagonal atomic structure is reported. The photodetector responds from visible to mid‐infrared range (up to ≈4.05 µm), and operates stably in ambient and at room temperature. It promises improved applications compared to conventional mid‐infrared photodetectors. The highest responsivity and external quantum efficiency achieved are 708 A W?1 and 82 700%, respectively, at the wavelength of 1064 nm. Efficient optical absorption beyond 8 µm is observed, indicating that the photodetection range can extend to longer than 4.05 µm. Owing to the low crystalline symmetry of layered PdSe2, anisotropic properties of the photodetectors are observed. This emerging material shows potential for future infrared optoelectronics and novel devices in which anisotropic properties are desirable.  相似文献   

15.
16.
A chemical vapor deposition method is developed for thickness-controlled (one to four layers), uniform, and continuous films of both defective gallium(II) sulfide (GaS): GaS0.87 and stoichiometric GaS. The unique degradation mechanism of GaS0.87 with X-ray photoelectron spectroscopy and annular dark-field scanning transmission electron microscopy is studied, and it is found that the poor stability and weak optical signal from GaS are strongly related to photo-induced oxidation at defects. An enhanced stability of the stoichiometric GaS is demonstrated under laser and strong UV light, and by controlling defects in GaS, the photoresponse range can be changed from vis-to-UV to UV-discriminating. The stoichiometric GaS is suitable for large-scale, UV-sensitive, high-performance photodetector arrays for information encoding under large vis-light noise, with short response time (<66 ms), excellent UV photoresponsivity (4.7 A W–1 for trilayer GaS), and 26-times increase of signal-to-noise ratio compared with small-bandgap 2D semiconductors. By comprehensive characterizations from atomic-scale structures to large-scale device performances in 2D semiconductors, the study provides insights into the role of defects, the importance of neglected material-quality control, and how to enhance device performance, and both layer-controlled defective GaS0.87 and stoichiometric GaS prove to be promising platforms for study of novel phenomena and new applications.  相似文献   

17.
18.
By mechanical exfoliation, it is possible to deposit atomically thin mica flakes down to single‐monolayer thickness on SiO2/Si wafers. The optical contrast of these mica flakes on top of a SiO2/Si substrate depends on their thickness, the illumination wavelength, and the SiO2 substrate thickness, and can be quantitatively accounted for by a Fresnel‐law‐based model. The preparation of atomically thin insulating crystalline sheets will enable the fabrication of ultrathin, defect‐free insulating substrates, dielectric barriers, or planar electron‐tunneling junctions. Additionally, it is shown that few‐layer graphene flakes can be deposited on top of a previously transferred mica flake. Our transfer method relies on viscoelastic stamps, as used for soft lithography. A Raman spectroscopy study shows that such an all‐dry deposition technique yields cleaner and higher‐quality flakes than conventional wet‐transfer procedures based on lithographic resists.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号