首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A multivariable model predictive control (MPC) algorithm is developed for the control and operation of a rapid pressure swing adsorption (RPSA)‐based medical oxygen concentrator. The novelty of the approach is the use of all four step durations in the RPSA cycle as independent manipulated variables in a truly multivariable context. The RPSA has a complex, cyclic, nonlinear multivariable operation that requires feedback control, and MPC provides a suitable framework for controlling such a multivariable system. The multivariable MPC presented here uses a quadratic optimization program with integral action and a linear model identified using subspace system identification techniques. The controller was designed and tested in simulation using a complex, highly coupled, nonlinear RPSA process model. The model was developed with the least restrictive assumptions compared to those reported in the literature, thereby providing a more realistic representation of the underlying physical phenomena. The resulting MPC effectively tracks set points, rejects realistic process disturbances and is shown to outperform conventional PID control. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1234–1245, 2018  相似文献   

2.
The effects of feed air pressure on the steady‐state performance of a medical oxygen concentrator (MOC) were experimentally evaluated using a novel design of a MOC unit which produced a continuous stream of ~90% O2 employing a rapid pressure swing adsorption (RPSA) process scheme. Dry, CO2 free air containing ~1% Ar at different feed gas pressures was used in the tests in conjunction with a commercial sample of LiLSX zeolite as the N2 selective adsorbent in the process. The bed size factor (BSF) can be systematically reduced by increasing the feed air pressure for any given total cycle time. The effect of feed air pressure on the oxygen recovery (R) is, however, more complex; it increases with increasing feed pressure only at longer cycle times while the effect is marginal at shorter cycle times. The BSF cannot be indefinitely reduced by lowering total process cycle time at any pressure—a minimum is exhibited in the BSF‐cycle time plot. The minimum value of the BSF decreases as the feed pressure is increased. The cycle time for the minimum BSF is, however, not significantly altered by the feed pressure in the data range of this work. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1212–1215, 2016  相似文献   

3.
就变压吸附空气分离制氧过程,对接近真实情况的非线性、非等温模型构成的偏微分方程组,采用正交配置进行空间离散化和三阶半隐式龙格 库塔法的数值计算方法,研究了变压吸附过程中床层内温度和浓度的动态行为,考察了清洗比、吸附压力、进气流量、吸附时间等操作参数对过程性能的影响,为过程优化设计建立基础。  相似文献   

4.
A detailed numerical study of the individual and cumulative effects of various mass, heat, and momentum transfer resistances, which are generally present inside a practical adiabatic adsorber, on the overall separation performance of a rapid pressure swing adsorption (RPSA) process is performed for production of nearly pure helium gas from an equimolar binary (N2 +He) gas mixture using 5 A zeolite. Column bed size factor (BSF) and helium recovery (R) from the feed gas are used to characterize the separation performances. All practical impediments like column pressure drop, finite gas‐solid mass and heat transfer resistances, mass and heat axial dispersions in the gas phase, and heats of ad(de)sorption causing nonisothermal operation have detrimental impacts on the overall process performance, which are significantly accentuated when the total cycle time of a RPSA process is small and the product gas helium purity is high. These impediments also prohibit indefinite lowering of BSF (desired performance) by decreasing process cycle time alone. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2008–2015, 2015  相似文献   

5.
A novel design of a compact rapid pressure swing adsorption system consisting of a single adsorber enclosed inside a product storage tank is proposed for application as a medical oxygen concentrator (MOC). A self‐contained test unit for the process is constructed which is capable of directly and continuously producing 1–3 sl/m of 90% O2 from compressed air. Pelletized LiLSX zeolite is used as the air separation adsorbent. Steady state process performance data [bed size factor (BSF) and O2 recovery (R) as functions of total cycle time (tc)], as well as transient, cyclic, adsorber pressure, and temperature profiles are presented. A four‐step Skarstrom‐like pressure swing adsorption cycle was used. Two options for column pressurization, (a) using compressed feed air cocurrently or (b) using a part of the oxygen‐enriched product gas counter‐currently were evaluated. Option (b) exhibited superior performance. The optimum total cycle time for option (b) was 5–6 s where the BSF was lowest (~45 kgs/TPD O2) and the corresponding R was ~29.3%. These numbers indicate that the adsorbent inventory of a MOC can be potentially reduced by a factor of three while offering a ~10–20% higher O2 recovery compared to a typical commercial unit. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3330–3335, 2014  相似文献   

6.
介绍了变压吸附法回收氢气的原理、工艺流程、运行方式等,并分析了运行效果和经济效益。  相似文献   

7.
利用FLUENT中气-固多孔介质模型可模拟多孔介质内气体的流动规律.针对FLUENT自带的单相多孔介质模型不能表现变压吸附气体与固体吸附颗粒之间的传质、传热问题,采用FLUENT用户自定义函数编程,反映吸附分离传质、传热和动量传递,将多孔介质单相模型耦合为更准确的气固两相流模型,并加以验证.结果表明,出口氧气平均摩尔浓度误差在2%左右,模拟与实验结果吻合较好.  相似文献   

8.
通过对微型制氧流程的实验研究和分析,确定了单节流小流量反吹和均压工艺的最佳实验参数,在保证产氧浓度和氧气最大回收率的条件下,该工艺流程吸附压力最低。结果表明:小流量反吹工艺可以提高产品气中氧气浓度(体积分数),吸附塔出口端单向阀可以有效降低吸附压力;双节流反吹工艺虽然可以提高产品气中氧气浓度,但节流孔径限制了产品氧气输出,导致吸附压力升高;单节流小流量反吹工艺和均压工艺中均压时间与瞬洗时间均存在最佳值。  相似文献   

9.
小型变压吸附制氧的真空解吸实验   总被引:2,自引:1,他引:1  
通过实验研究了真空环境对小型变压吸附制氧的影响,考察了真空解吸与常压解吸两种条件下,进气压力、产氧量与均压时间对氧气纯度的影响。实验结果表明:真空解吸有利于提高氧气纯度和缩短产氧启动时间;真空解吸条件下,进气压力、产氧量与均压时间的变化对氧气纯度的影响规律与常压解吸时相同,但影响程度减弱。  相似文献   

10.
研究了气源温度和解吸条件对制氧效果的影响,结果表明:细长解吸管路会导致吸附塔内氧浓度波前沿在吸附周期内极易穿透床层,在产氧期及间歇期都会有低浓度氧流入储氧罐,造成氧浓度和流量下降;较高的气源温度有利于分子筛解吸再生,在15~65 ℃内,平均每升高10 ℃,产氧体积分数可以提高1.2%。  相似文献   

11.
快速变压吸附制氧动态传质系数模拟分析   总被引:5,自引:4,他引:1       下载免费PDF全文
研究快速变压吸附制氧过程中的传质过程,结合实验数据对全局动态传质系数与常数传质系数进行对比模拟分析,并考察各传质阻力对传质效果的影响。结果表明:基于轴向、膜扩散和孔扩散估算的动态传质系数是有效的。膜阻力是主要阻力,其次是轴向扩散阻力,大孔扩散阻力较小,微孔扩散阻力可忽略。在快速变压吸附中,由于气速和温度变化较快,传质系数也会有较大变化,总体趋势是传质系数随着温度和气速的升高而升高。采用恒定传质系数无法准确描述吸附塔内各个时间点、空间点上的传质行为,根据各节点状态计算出的动态估算传质系数能够与吸附塔内的行为有较好的吻合度,模型具有较高的可信性。  相似文献   

12.
孙烈刚  吴迪  李天文  尚念刚  孙晓辉 《现代化工》2014,34(9):125-127,129
介绍了变压吸附制氮技术的优点、原理方法及工艺流程,实验研究了吸附压力、吸附解吸时间、产品流量等主要工艺参数对变压吸附制氮装置性能的影响,最后得出实验装置的最佳工艺条件为:吸附压力0.8 MPa,吸附解吸时间54 s,均压时间4 s,产品气出气流量7 m3/h。此时,实验装置制得的产品氮气体积分数最稳定,平均体积分数98%以上,回收率在40%左右。  相似文献   

13.
采用变压吸附工艺脱除乙炔中的水分,使乙炔含水质量分数降至100×10-6以下,乙炔回收率达99.99%以上,40万t/a PVC装置新增利润可达185.9万元/a.  相似文献   

14.
真空变压吸附分离含氧煤层气的工艺参数实验研究   总被引:1,自引:0,他引:1  
针对真空变压吸附富集低浓度含氧煤层气,对工艺参数和吸附塔结构进行了优化试验研究。实验结果标明,在一定的时间范围内,随着吸附时间的延长,解吸气和排放气中甲烷体积分数逐渐增大,而排放气中的氧气体积分数则小幅度降低;反吹步骤可以降低排放气中甲烷和氧气的体积分数,但反吹步骤也会降低解吸气中甲烷的体积分数;保持吸附剂不变,吸附塔高径比由3.7增大到13.3,解吸气中甲烷体积分数增大了2.1%,排放气中甲烷体积分数降低了1%。可以为低浓度含氧煤层气富集的实际应用提供参考。  相似文献   

15.
快速变压吸附制氢工艺的模拟与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目前工业上主要通过变压吸附技术从蒸汽甲烷重整气中制取氢产品气。然而,能源需求量的快速增加使得传统变压吸附技术在产量方面的不足越发明显。为此,进行了快速变压吸附从蒸汽甲烷重整气中制取氢气的模拟研究。采用活性炭和5A分子筛作为吸附剂,并以测得的原料气中各组分在两种吸附剂上的吸附数据为基础,进行了六塔快速变压吸附工艺的数值模拟与分析。在分析了塔内温度、压力和固相的浓度分布后,探究了进料流量、双层吸附剂高度比以及冲洗进料比三个操作参数对于快速变压吸附工艺性能的影响,结果表明:原料气组成为H2/CH4/CO/CO2=76%/3.5%/0.5%/20%,吸附压力为22 bar(1 bar=105 Pa),解吸吹扫压力为1.0 bar,处理量为0.8875 mol·s-1,吸附剂床层高度比为0.5∶0.5,冲洗进料比为22.37%时,可获得H2纯度99.90%,回收率69.88%,此时H2产量为0.4713 mol·s-1。相比之下,氢气纯度为99.90%时,尽管PSA工艺回收率为83.40%,但处理量只有0.39 mol·s-1,因此H2产量仅为0.2472 mol·s-1。  相似文献   

16.
徐文赓  刘浩华 《中国氯碱》2010,(9):30-32,40
针对变压吸附系统尾气氯乙烯含量超标问题,对该套系统进行了查定。介绍了查定过程,提出了改进建议。  相似文献   

17.
变压吸附制氧机吸附器结构研究进展   总被引:1,自引:0,他引:1  
张辉  刘应书  刘文海  张德鑫  翟晖 《化工进展》2007,26(11):1602-1609
介绍了变压吸附制氧机中吸附器的内部结构、分流板、分子筛布局与装填方式、压料部件与装配等内容,对影响制氧机性能的因素进行了剖析和论述,探讨了变压吸附制氧机设计中关键影响因素和技巧。  相似文献   

18.
为研究自制碳分子筛对低浓度煤层气的浓缩性能,分别使用自制碳分子筛及活性炭为吸附剂、采用变压吸附对CH_4浓度为25%的低浓度煤层气进行提浓,考察了吸附压力、吸附时间等工艺参数对提浓效果的影响,对碳分子筛和活性炭吸附剂的提浓效果进行了比较。结果表明:随吸附压力的提高,提浓效果存在峰值,较优的吸附压力为200 k Pa;吸附时间增加,提浓效果先快速提高,吸附时间继续增加提浓效果缓慢下降,最佳吸附时间为120 s。自制碳分子筛吸附剂具有浓缩效果好、产品气浓度稳定的优势。  相似文献   

19.
真空变压吸附沼气净化过程的仿真研究   总被引:1,自引:4,他引:1       下载免费PDF全文
张湜  陈文亮  李晖  张亚兵  韦萍 《化工学报》2013,64(4):1300-1305
真空变压吸附(VPSA)是一种气体分离技术,该技术运用在沼气净化过程还存在较多的问题,针对该过程吸附塔出口浓度出现的浓度峰问题,运用线性推动力模型(LDF)与Langmuir等温方程对其建立了数学模型,模拟分析了缓冲罐中杂质浓度对吸附步骤出口浓度的影响。结果表明:相同吸附时间下,随着吸附压的降低,二均降结束时会有更多的杂质进入缓冲罐,而缓冲罐中的杂质又会通过一均升步骤进入吸附塔,最终使得吸附步骤出口浓度曲线出现波峰,从而影响了吸附塔出口CH4含量。通过模型的分析,吸附时间随着吸附压不断降低而缩短,可以有效控制杂质进入缓冲罐,从而使吸附塔出口CH4含量提高。  相似文献   

20.
变压吸附制氮机组运行总结   总被引:3,自引:0,他引:3  
变压吸附空分制氮技术以洁净的压缩空气为原料,利用焦炭分子筛吸附其中的氧气成分,从而制得高纯度的氮气。介绍了变压吸附制氮机组的工作原理、影响氮气纯度的因素以及运行状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号