首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Although metal halide perovskite (MHP) light-emitting diodes (LEDs) have demonstrated great potential in terms of electroluminescence efficiency, the operational stability of MHP LEDs currently remains the biggest bottleneck toward their practical usage. Well-confined excitons/charge carriers in a dielectric/quantum well based on conventional spatial or potential confinement approaches substantially enhance radiative recombination in MHPs, but an increased surface-to-volume ratio and multiphase interfaces likely result in a high degree of surface or interface defect states, which brings about a critical environmentally/operationally vulnerable point on LED stability. Here, an effective solution is suggested to mitigate such drawbacks using strategically designed surface-2D/bulk-3D heterophased MHP nanograins for long-term-stable LEDs. The 2D surface-functionalized MHP renders significantly reduced trap density, environmental stability, and an ion-migration-immune surface in addition to a fast radiative recombination owing to its spatially and potentially confined charge carriers, simultaneously. As a result, heterophased MHP LEDs show substantial improvement in operational lifetime (T50: >200 h) compared to conventional pure 3D or quasi-2D counterparts (T50: < 0.2 h) as well as electroluminescence efficiency (surface-2D/bulk-3D: ≈7.70 ph per el% and pure 3D: ≈0.46 ph per el%).  相似文献   

2.
The poor stability of perovskite light-emitting diodes (PeLEDs) is a key bottleneck that hinders commercialization of this technology. Here, the degradation process of formamidinium lead iodide (FAPbI3)-based PeLEDs is carefully investigated and the device stability is improved through binary-alkalication incorporation. Using time-of-flight secondary-ion mass spectrometry, it is found that the degradation of FAPbI3-based PeLEDs during operation is directly associated with ion migration, and incorporation of binary alkali cations, i.e., Cs+ and Rb+, in FAPbI3 can suppress ion migration and significantly enhance the lifetime of PeLEDs. Combining experimental and theoretical approaches, it is further revealed that Cs+ and Rb+ ions stabilize the perovskite films by locating at different lattice positions, with Cs+ ions present relatively uniformly throughout the bulk perovskite, while Rb+ ions are found preferentially on the surface and grain boundaries. Further chemical bonding analysis shows that both Cs+ and Rb+ ions raise the net atomic charge of the surrounding I anions, leading to stronger Coulomb interactions between the cations and the inorganic framework. As a result, the Cs+–Rb+-incorporated PeLEDs exhibit an external quantum efficiency of 15.84%, the highest among alkali cation-incorporated FAPbI3 devices. More importantly, the PeLEDs show significantly enhanced operation stability, achieving a half-lifetime over 3600 min.  相似文献   

3.
Hybrid organic–inorganic perovskite semiconductors have shown potential to develop into a new generation of light‐emitting diode (LED) technology. Herein, an important design principle for perovskite LEDs is elucidated regarding optimal perovskite thickness. Adopting a thin perovskite layer in the range of 35–40 nm is shown to be critical for both device efficiency and stability improvements. Maximum external quantum efficiencies (EQEs) of 17.6% for Cs0.2FA0.8PbI2.8Br0.2, 14.3% for CH3NH3PbI3 (MAPbI3), 10.1% for formamidinium lead iodide (FAPbI3), and 11.3% for formamidinium lead bromide (FAPbBr3)‐based LEDs are demonstrated with optimized perovskite layer thickness. Optical simulations show that the improved EQEs source from improved light outcoupling. Furthermore, elevated device temperature caused by Joule heating is shown as an important factor contributing to device degradation, and that thin perovskite emitting layers maintain lower junction temperature during operation and thus demonstrate increased stability.  相似文献   

4.
Compared with thin-film morphology, 1D perovskite structures such as micro/nanowires with fewer grain boundaries and lower defect density are very suitable for high-performance photodetectors with higher stability. Although the stability of perovskite microwire-based photodetectors has been substantially enhanced in comparison with that of photodetectors based on thin-film morphology, practical applications require further improvements to the stability before implementation. In this study, a template-assisted method is developed to prepare methylammonium lead bromide (MAPbBr3) micro/nanowire structures, which are encapsulated in situ by a protective hydrophobic molecular layer. The combination of the protective layer, high crystalline quality, and highly ordered microstructures significantly improve the stability of the MAPbBr3 single-crystal microwire arrays. Consequently, these MAPbBr3 single-crystal microwire-array-based photodetectors exhibit significant long-term stability, maintaining 96% of the initial photocurrent after 1 year without further encapsulation. The lifetime of such photodetectors is hence approximately four times longer than that of the most stable previously reported perovskite micro/nanowire-based photodetector; this is thought to be the most stable perovskite photodetector reported thus far. Furthermore, this work should contribute further toward the realization of perovskite 1D structures with long-term stability.  相似文献   

5.
6.
7.
8.
9.
Organic–inorganic hybrid lead-halide perovskite materials (ABX3) have attracted widespread attention in the field of photovoltaics owing to their impressive optical and electrical properties. However, obstacles still exist in the commercialization of perovskite photovoltaics, such as poor stability, hysteresis, and human toxicity. A-site cation engineering is considered to be a powerful tool to tune perovskite structures and the resulting optoelectronic properties. Based on the selection and combination of A-site cations, three types of perovskite structures, i.e., 3D perovskite, reduced-dimensional (2D/quasi-2D) perovskite, and 2D/3D hybrid perovskite can be formed. Herein, the remarkable breakthroughs resulting from these three perovskite structures are summarized, and their corresponding properties and characteristics, as well as their intrinsic disadvantages, are highlighted. By summarizing recent research progress, a new viewpoint for improving the performance and stability of perovskite photovoltaics is provided.  相似文献   

10.
Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE-S and its application as an HTM in PVSCs are shown. The all-inorganic inverted PVSCs made using TPE-S, processed without any dopant or post-treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE-S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all-inorganic CsPbI2Br PVSCs based on TPE-S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all-inorganic PVSCs. Meanwhile, the TPE-S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE-S as a simple and general dopant-free HTM for different types of high-performance PVSCs.  相似文献   

11.
Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long‐term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current–voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single‐crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.  相似文献   

12.
Organic–inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long-term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase-stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br), the amount of Br is regulated, leading to high power conversion efficiency. As a result, MA-free perovskite solar cells achieve remarkable long-term stability and a PCE of 20.50%, which is one of the best results for MA-free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs.  相似文献   

13.
14.
Due to their outstanding optoelectronic properties, metal halide perovskites have been intensively studied in recent years. The latest certificated efficiency of 23.3% recently achieved in perovskite solar cells (PVSCs) enables them to be used as a very promising candidate for next‐generation photovoltaics. The morphology, defect density, and water resistance of perovskite films have an enormous impact on the performance and stability of PVSCs. Ligands, with coordinating capability, have been widely developed to improve the quality and stability of perovskite materials significantly. In the first section of this review, the role of ligands in fabricating perovskite films by different methods (one‐step, two‐step, and postdeposition treatment) is discussed. In the second section, the progress on ligand‐passivated perovskites via post‐treatment, in situ passivation during perovskite formation, and modifying the substrates before perovskite formation is reviewed. In the third section, a discussion of ligand‐stabilized perovskite films from the perspectives of crystal crosslinking, dimensionality engineering, and interfacial modification is presented. Finally, a summary and an outlook are given.  相似文献   

15.
16.
Solution‐processed perovskite (PSC) solar cells have achieved extremely high power conversion efficiencies (PCEs) over 20%, but practical application of this photovoltaic technology requires further advancements on both long‐term stability and large‐area device demonstration. Here, an additive‐engineering strategy is developed to realize a facile and convenient fabrication method of large‐area uniform perovskite films composed of large crystal size and low density of defects. The high crystalline quality of the perovskite is found to simultaneously enhance the PCE and the durability of PSCs. By using the simple and widely used methylammonium lead iodide (MAPbI3), a certified PCE of 19.19% is achieved for devices with an aperture area of 1.025 cm2, and the high‐performing devices can sustain over 80% of the initial PCE after 500 h of thermal aging at 85 °C, which are among the best results of MAPbI3‐based PSCs so far.  相似文献   

17.
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved.  相似文献   

18.
Today's perovskite solar cells (PSCs) mostly use components, such as organic hole conductors or noble metal back contacts, that are very expensive or cause degradation of their photovoltaic performance. For future large‐scale deployment of PSCs, these components need to be replaced with cost‐effective and robust ones that maintain high efficiency while ascertaining long‐term operational stability. Here, a simple and low‐cost PSC architecture employing dopant‐free TiO2 and CuSCN as the electron and hole conductor, respectively, is introduced while a graphitic carbon layer deposited at room temperature serves as the back electrical contact. The resulting PSCs show efficiencies exceeding 18% under standard AM 1.5 solar illumination and retain ≈95% of their initial efficiencies for >2000 h at the maximum power point under full‐sun illumination at 60 °C. In addition, the CuSCN/carbon‐based PSCs exhibit remarkable stability under ultraviolet irradiance for >1000 h while under similar conditions, the standard spiro‐MeOTAD/Au based devices degrade severely.  相似文献   

19.
20.
Polyvinyl pyrrolidone (PVP) is doped to PbI2 and organic salt during two-step growth of halideperovskite. It is observed that PVP molecules can interact with both PbI2 and organic salt, reduce the aggregation and crystallization of the two, and then slow down the coarsening rate of perovskite. As doping concentration increases from 0 to 1 mM in organic salt, average crystallite size of perovskite decreases monotonously from 90 to 34 nm; Surface fluctuation reduces from 259.9 to 179.8 nm at first, and then increases; Similarly, surface roughness decreases from 45.55 to 26.64 nm at first, and then rises. Accordingly, a kind of “confinement effect” is resolved to crystallite growth and surface fluctuation/roughness, which helps to build compact and uniform perovskite film. Density of trap states (t-DOS) is cut down by ≈60% at moderate doping  (0.2 mM). Due to the “confinement effect”, power conversion efficiency of perovskite solar cells is improved from 19.46 (±2.80) % to 21.50 (±0.99) %, and further improved to 24.11% after surface modification. Meanwhile, “confinement effect” strengthens crystallite/grain boundaries and improves thermal stability of both film and device. T80 of device increases to 120 h, compared to 50 h for reference ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号