首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably (12,13-epoxy-9(Z)-octadecenoic (epoxyoleic) acid, but also cyclic (cyclopropene and cyclopropane) fatty acids. To clarify this matter, two kenaf seed oils (from the Cubano and Dowling varieties of kenaf) were investigated regarding their fatty acid profiles. Both contain epoxyoleic acid, the Cubano sample around 2 % and the Dowling sample 5-6 % depending on processing. The cyclic fatty acids malvalic and dihydrosterculic were identified in amounts around 1 %. Trace amounts of sterculic acid were observed as were minor amounts of C17:1 fatty acids. The results are discussed in the context of the fatty acid profiles of other hibiscus seed oils.  相似文献   

2.
In this study, the proximate and fatty acid compositions of the muscle tissue of 186 samples of fish belonging to fifteen species of freshwater fish harvested in subalpine lakes (bleak, shad, crucian carp, whitefish, common carp, pike, black bullhead, burbot, perch, Italian roach, roach, rudd, wels catfish, chub and tench) were investigated. Most of the fish demonstrated a lipid content in the fillet lower than 2.0 g 100 g?1 wet weight (range 0.6–9.7). A strong relationship between feeding behavior and fatty acid composition of the muscle lipids was observed. Planktivorous fish showed the lowest amounts of n‐3 fatty acids (p < 0.05), but the highest monounsaturated fatty acid (MUFA) contents, in particular 18:1n‐9. Conversely, carnivorous fish showed the highest amounts of saturated fatty acids and n‐3 fatty acids (p < 0.05), but the lowest MUFA contents. Omnivorous fish showed substantial proportions of n‐3 fatty acids and the highest contents of n‐6 fatty acids. Principal component analysis showed a distinct separation between fish species according to their feeding habits and demonstrated that the most contributing trophic markers were 18:1n‐9, 18:3n‐3, 22:6n‐3 and 20:4n‐6. The quantitative amounts n‐3 polyunsaturated fatty acid in muscle tissues varied depending on the fish species, the lipid content and the feeding habits. Some species were very lean, and therefore would be poor choices for human consumption to meet dietary n‐3 fatty acid requirements. Nevertheless, the more frequently consumed and appreciated fish, shad and whitefish, had EPA and DHA contents in the range 900–1,000 mg 100 g?1 fresh fillet.  相似文献   

3.
Camelina oil (CO) replaced 50 and 100 % of fish oil (FO) in diets for farmed rainbow trout (initial weight 44 ± 3 g fish?1). The oilseed is particularly unique due to its high lipid content (40 %) and high amount of 18:3n‐3 (α‐linolenic acid, ALA) (30 %). Replacing 100 % of fish oil with camelina oil did not negatively affect growth of rainbow trout after a 12‐week feeding trial (FO = 168 ± 32 g fish?1; CO = 184 ± 35 g fish?1). Lipid and fatty acid profiles of muscle, viscera and skin were significantly affected by the addition of CO after 12 weeks of feeding. However, final 22:6n‐3 [docosahexaenoic acid (DHA)] and 20:5n‐3 [eicosapentaenoic acid (EPA)] amounts (563 mg) in a 75 g fillet (1 serving) were enough to satisfy daily DHA and EPA requirements (250 mg) set by the World Health Organization. Other health benefits include lower SFA and higher MUFA in filets fed CO versus FO. Compound‐specific stable isotope analysis (CSIA) confirmed that the δ13C isotopic signature of DHA in CO fed trout shifted significantly compared to DHA in FO fed trout. The shift in DHA δ13C indicates mixing of a terrestrial isotopic signature compared to the isotopic signature of DHA in fish oil‐fed tissue. These results suggest that ~27 % of DHA was synthesized from the terrestrial and isotopically lighter ALA in the CO diet rather than incorporation of DHA from fish meal in the CO diet. This was the first study to use CSIA in a feeding experiment to demonstrate synthesis of DHA in fish.  相似文献   

4.
This study evaluated the production of fatty acid ethyl esters from fish oil using ultrasonic energy and alkaline catalysts dissolved in ethanol. The feasibility of fatty acid ethyl ester production was determined using an ultrasonic bath and probe, and between 0.5 and 1% KOH (added to the fish oil). Furthermore, factors such as ultrasonic device (bath and probe), catalyst (KOH and C2H5ONa), temperature (20 and 60 °C), and duration of exposure (10–90 min) were assessed. Sodium ethoxide was found to be a more efficient catalyst than KOH when transesterifying fish oil. Ultrasonic energy applied for greater than 30 min at 60 °C using 0.8% of C2H5ONa as a catalyst transesterified over 98% fish oil triglycerides to fatty acid ethyl esters. It is reasonable to conclude that the yield of fatty acid ethyl esters produced by applying ultrasonic energy to fish oil is related to the sonication time. Due to increases in the surface area contact between the reactants and the catalyst, ultrasonic energy has the potential to reduce the production time required by a conventional large-scale commercial transesterification method that uses agitation as a way of mixing.  相似文献   

5.
The objective of this study was to examine the effects of flaxseed (FLAX) oil or 16-carbon n-7 fatty acid -enhanced fish oil (Provinal; POA) supplementation on serum, liver and skeletal muscle fatty acid concentrations, serum ceramide and plasma insulin concentrations, and gene expression. Lambs [n = 18; 42 ± 5.6 kg body weight (BW); 7 months] were individually fed one of the three treatments: (1) control (CON), no oil supplement, (2) FLAX; at 0.1% of BW, or (3) POA at 0.1% of BW for 60 days. Daily feed intake and weight gain were decreased by 21% and 34%, respectively, for POA than FLAX. Liver and skeletal muscle concentrations of palmitoleic acid were greater by 396% and 87%, respectively, for POA than FLAX; whereas, liver and skeletal muscle α-linolenic acid concentrations were greater by 199% and 118%, respectively, for FLAX. Supplementation with POA also had greater serum and tissue concentrations of eicosapentaenoic and docosahexaenoic acids. Serum glucose and plasma insulin concentrations were elevated with FLAX supplementation at the end of the study. Supplementation with POA altered serum ceramide concentrations compared to CON or FLAX. Oil supplementation, both FLAX and POA, downregulated expression of unesterified fatty acid receptors (FFAR) 1 and FFAR4 in the liver; however, oil supplementation upregulated expression of FFAR1 in muscle. Interleukin-6 (IL6) and tumor necrosis factor-α (TNFA) expression were downregulated with oil supplementation in the liver; however, FLAX upregulated TNFA in muscle. These results show that oil supplementation can enhance uptake and deposition of unique fatty acids that alter ceramide concentrations and gene expression in tissues.  相似文献   

6.
Eutrophication results in a deficiency of n‐3 LC‐PUFA (long‐chain polyunsaturated fatty acids) in aquatic food chains, affecting fish nutrition and physiology. The trophic transfer of FA (fatty acids) to fish species of different feeding habits was investigated in two reservoirs in southeast Brazil—the mesotrophic Ponte Nova Reservoir (PN) and the hypereutrophic Billings Reservoir (Bil). Total FA profile of stomach contents and adipose tissue, triacylglycerols (TAG), and phospholipids (PL) from liver and muscle of the omnivorous Astyanax fasciatus and the carnivorous Hoplias malabaricus were analyzed by gas chromatography. A prevalence of n‐6PUFA, as 18:2n‐6 (linoleic acid) and 20:4n‐6 (arachidonic acid, ARA) was observed in the stomach contents and in the tissues of A. fasciatus from the PN reservoir. In contrast, n‐3 LC‐PUFA, as 20:5n‐3 (eicosapentaenoic acid, EPA) was accumulated in fish tissues from Bil, resulting in higher n3/n6 and EPA/ARA ratios, compared to fish from PN. This differential FA accumulation was also observed for H. malabaricus, but differences were slightly minor, and no changes were observed in the EPA/ARA ratios between fish from both reservoirs. Regardless reservoir, FA profiles of TAG resembled that of their diet, whereas FA profiles of PL were more conservative and mainly comprised by LC‐PUFA. We conclude that reservoir trophic status affected the FA composition of food resources available to these fish species, resulting in differential allocation of n‐3 and n‐6 FA. As expected, FA profile of the investigated fish species also reflected their feeding habit and physiological demands.  相似文献   

7.
Previous studies have shown that n‐3 polyunsaturated fatty acids n‐3 (n‐3 PUFA) have several anticancer effects, especially attributed to their ability to modulate a variety of genomic and immune responses. In this context, this randomized, prospective, controlled clinical trial was conducted in order to check whether supplementation of 2 g/day of fish oil for 9 weeks alters the production of inflammatory markers, the plasma fatty acid profile and the nutritional status in patients with colorectal cancer (CRC). Eleven adults with CRC in chemotherapy were randomized into two groups: (a) supplemented (SG) daily with 2 g/day of encapsulated fish oil [providing 600 mg/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)] for 9 weeks (n = 6), and (b) control (CG) (n = 5). All outcomes were evaluated on the day before the first chemotherapy session and 9 weeks later. Plasma TNF‐α, IL‐1β, IL‐10 and IL‐17A, the pro/anti‐inflammatory balance (ratio TNF‐α/IL‐10 and IL‐1β/IL10) and serum albumin, showed no significant changes between times and study groups (p > 0.05). C‐reactive protein (CRP) and the CRP/albumin ratio showed opposite behavior in groups, significantly reducing their values in SG (p < 0.05). Plasma proportions of EPA and DHA increased 1.8 and 1.4 times, respectively, while the ARA reduced approximately 0.6 times with the supplementation (9 weeks vs baseline, p < 0.05). Patients from SG gained 1.2 kg (median) while the CG lost ?0.5 kg (median) during the 9 weeks of chemotherapy (p = 0.72). These results demonstrate that 2 g/day of fish oil for 9 weeks of chemotherapy improves CRP values, CRP/albumin status, plasma fatty acid profile and potentially prevents weight loss during treatment.  相似文献   

8.
This study presented a refining process and reported on fatty acid composition and the physicochemical properties of the oil from black soldier fly larvae (BSFL). Crude larvae oil was purified through four steps consisting of degumming, neutralization, bleaching, and deodorization. Optimum degumming conditions that give the highest phospholipid weight and oil consisted of water concentration of 7% (v/v), followed by addition of H2SO4 at a concentration of 0.5% (v/v). Optimum conditions for saponification that maximize saponification value and free fatty acid (FFA) value were 0.4 mg NaOH/100 g oil, 1 hour, and 80 °C of NaOH quantity, reaction time, and temperature, respectively. The oil was then dehydrated using 10 mg Na2SO4/g oil. The bleaching process that gives maximum oil yield consisted of activated carbon at concentration of 5% (w/w), followed by centrifugation at a speed of 5000 rpm (radius = 86 mm) for 30 min. The contents of lauric acid, linoleic acid, and linolenic acid in purified oil were 28.8%, 11.1%, and 0.4%, respectively. Physicochemical properties of the refined oil included viscosity of 96 ± 0.14 cP (measured at 20 °C), FFA value of 0.45 ± 0.017%, acid value of 0.9 ± 0.043 mg KOH g−1, saponification value of 215.78 mg KOH g−1, iodine value of 53.7 gI2/100 g, and peroxide index of 133 mEq kg−1.  相似文献   

9.
Seeds of six safflower (C. tinctorius L.) genotypes and 19 accessions of two wild species were analyzed for oil and fatty acid composition. Oil content ranged from 29.20 to 34.00, 20.04 to 30.80 and 15.30 to 20.80% in C. tinctorius, C. oxyacantha Bieb. and C. lanatus L., respectively. The main fatty acids of oleic, linoleic, palmitic and stearic acids composed 96–99% of the total fatty acids in all species. The sum of myristic, palmitoleic, arachidic, and behenic fatty acids in oil of the species ranged from 0.43 to 0.57%. The oleic acid in seed oil of C. tinctorius, C. oxyacantha and C. lanatus ranged from 12.24 to 15.43, 14.11 to 19.28 and 16.70 to 19.77%, respectively. The corresponding ranges for linoleic acid were 71.05 to 76.12, 63.90 to 75.43 and 62.47 to 71.08%. Palmitic acid in seed oil varied from 5.48 to 7.59% in C. tinctorius, 6.09 to 8.33% in C. oxyacantha and 7.44 to 8.78% in C. lanatus. The stearic acid of the seed oil showed a variation of 1.72 to 2.86, 2.50 to 4.87 and 3.14 to 4.79% in genotypes of these species, respectively. The fatty acids composition of oil among the cultivated and wild species were not considerably different, indicating that seed oil of the wild safflower is possibly suitable for human consumption and industrial purposes.  相似文献   

10.
11.
采用气相色谱法分析了棉籽酸化油的脂肪酸组成,并对其理化性质进行了研究。分析结果表明,棉籽酸化油的含油率为91.33%,酸值为144.35mgKOH/g,碘值为116.58gI2/100g,皂化值为199.80mgKOH/g;其主要脂肪酸为棕榈酸(21.29%)、硬脂酸(2.29%)、油酸(23.72%)、亚油酸(50.23%)和亚麻酸(0.39%),其中不饱和脂肪酸的含量高达74%,具有很高的工业利用价值。  相似文献   

12.
Lipid content and fatty acid composition were determined in edible meat of fifteen marine fish species caught on the Southeast Brazilian coast and two from East Antarctic. Most of the fish had lipid amounts lower than 10% of their total weight. Palmitic acid (C16:0) predominated, accounting for 54–63% of the total amount of saturated fatty acids. Oleic acid (C18:1n-9) was the most abundant (49–69%) monounsaturated fatty acid, and docosahexaenoic acid (DHA) was the predominant polyunsaturated fatty acid (PUFA), accounting for 31–84% of n-3 PUFA. n-3 PUFA level were highest in Antarctic fish meat, comprising 45% of the total fatty acid content, which consisted of mainly EPA (16.1 ± 1.5 g/100 g lipids) and DHA (24.8 ± 2.4 g/100 g lipids). The amounts of EPA + DHA in g/100 g of lipids on the Southeast Brazilian coast and Antarctic fish species investigated were found to be similar: 42.0 ± 1.7 for Bonito cachorro, 41.0 ± 2.3 for Atum, and 39.4 ± 1.8 for peixe porco, respectively. All the studied species exhibited an n-3/n-6 ratio higher than 3, which confirms the great importance of Southeast Brazilian coast fish as a significant dietary source of n-3 PUFA.  相似文献   

13.
Various components of Phoenix tree (Firmiana simplex) seed were determined. Oil, protein, moisture, ash, and fiber accounted for 27.8 ± 0.3, 19.7 ± 0.4, 7.5 ± 0.2, 4.4 ± 0.3, and 31.23 ± 0.93 % (w/w) of the seed, respectively. The acid value, peroxide value, saponification value, and unsaponifiable matter content of Phoenix tree seed oil extracted using the Soxhlet method were 3.73 ± 0.02 mg KOH/g, 1.97 ± 0.21 mmol/kg, 183.74 ± 2.37 mg KOH/g, and 0.90 ± 0.05 g/100 g, respectively. The total tocopherol content was 54.5 ± 0.5 mg/100 g oil, which consisted mainly of δ‐tocopherol (29.5 ± 0.6 mg/100 g oil) and γ‐tocopherol (13.8 ± 0.8 mg/100 g oil). Linoleic acid (L, 30.2 %), oleic acid (O, 22.2 %), and sterculic acid (S, 23.2 %) were the main unsaturated fatty acids of Phoenix tree seed oil. The saturated fatty acids included palmitic acid (17.4 %) and stearic acid (St, 2.9 %). The work shows the first report of sterculic acid in seeds of this species. This oil can be used as a raw material to produce sterculic acid.  相似文献   

14.
Little information is available concerning whether incorporation of dietary omega-3 fatty acids into plasma lipids changes during healthy aging. Elderly (74 ± 4 years old) and young (24 ± 2 years old) adults were given a fish oil supplement for 3 weeks that provided 680 mg/day of docosahexaenoic acid and 320 mg/day of eicosapentaenoic acid, followed by a 2 week wash-out period. Compliance was monitored by spiking the capsules with carbon-13 glucose, the excretion of which was measured in breath CO2. In response to the supplement, plasma docosahexaenoic acid rose 42% more in the elderly but eicosapentaenoic responded similarly in both groups. Despite raising docosahexaenoic acid intake by five to tenfold, the supplement did not raise plasma free docosahexaenoic acid (% or mg/dL) in either group. We conclude that healthy aging is accompanied by subtle but significant changes in DHA incorporation into plasma lipids.  相似文献   

15.
Royal jelly (RJ) is a beehive product that has gained a significant scientific and commercial interest due to its healthy properties. In the present study, lipid content, fatty acid profile and phytosterol amount were determined in eight local and four commercial pure RJ samples. A mixture of diethyl ether/isopropanol 50/1 (v/v) was chosen to extract fat matter from RJ. Lipid amounts ranged from 2.3 and 7.2 % and from 2.0 to 3.2 % of the fresh product in local and commercial RJ, respectively. Fourteen fatty acids and three phytosterols were identified. About 70 % of the total fatty acids consisted of (E)‐10‐hydroxy‐2‐decenoic and 10‐hydroxydecanoic acid. No significant difference was observed between local and commercial samples in regards to the relative amount of individual fatty acids. Sterols were in the range 179–701 and 329–1,097 mg kg?1 of fat in local and commercial RJ, respectively. A significant difference (p ≤ 0.05) was observed within RJ types in regards to the 24‐methylenecholesterol fraction, amounting to 77 and 67 % of identified sterols in local and commercial products, respectively.  相似文献   

16.
The proximate, physicochemical, and fatty acid compositions of seed oil extracted from khat (Catha edulis) were determined. The oil, moisture, crude protein, crude fiber, crude carbohydrate, and ash content in seeds were 35.54, 6.63, 24, 1.01, 30.4 %, and 1.32 g/100 g DW respectively. The free fatty acids, peroxide value, saponification value, and iodine value were 2.98 %, 12.65 meq O2/kg, 190.60 mg KOH/g, and 145 g/100 g oil, respectively. Linolenic acid (C18:3, 50.80 %) and oleic (C18:1, 16.96 %) along with palmitic acid (C16:0, 14.60 %) were the dominant fatty acids. The seed oil of khat can be used in industry for the preparation of liquid soaps and shampoos. Furthermore, high levels of unsaturated fatty acids make it an important source of nutrition especially as an animal product substitute for omega‐3 fatty acids owing to the high content of linolenic acid.  相似文献   

17.
The lipid content and fatty acid (FA) composition of seeds from the Asian ginseng Panax ginseng growing naturally in taiga forests of the Russian Far East and seeds from cultivated ginseng were studied in this work. The total lipid content of seeds from both wild and cultivated plants was 9–12 % of fresh weight. FA were analyzed as isopropyl esters on a polar capillary column BD‐225, which allows good separation of petroselinic and oleic acids. The structure of FAs was confirmed using GC–MS of fatty acid methyl ester (FAME) and 4,4‐dimethyloxazoline derivatives. In all the seed samples, the major FA was petroselinic acid 18:1(n‐12) which comprised more than 60 %; the contents of oleic and linoleic acids were lower (15–17 and 15–16 %, respectively). Earlier, a higher level (>80 %) of oleic acid had been reported for ginseng seeds. This discrepancy can be explained by an insufficient separation of these acids on standard columns used for GC of FAME. In general, seeds of wild and cultivated ginseng are very similar in lipid content and FA composition.  相似文献   

18.
High stearic, low α-linolenic acid soybean oil (HSLL) has been developed via traditional breeding to serve as a substitute for partially hydrogenated soybean oils used in food manufacturing. The purpose of this study was to estimate the impact on fatty acid intake in the United States if HSLL were substituted for partially hydrogenated soybean oils used in several food categories, including baked goods, shortenings, fried foods, and margarines. Using National Health and Nutrition Examination Survey (NHANES) data (1999–2002), baseline intakes of five fatty acids and trans fatty acids (TFA) were determined at the mean and 90th percentile of fat consumption. Then intakes of these fatty acids were determined after HSLL was substituted for 100% of the partially hydrogenated soybean oils used in these four food categories. The results show that baseline intake of stearic acid is 3.0% energy at the mean and 3.3% energy at the 90th percentile. Use of HSLL could increase stearic acid intake to about 4–5% energy. Mean intakes of TFA could decrease from 2.5 to 0.9% energy, and intake of palmitic acid would remain unchanged. Use of HSLL as a substitute for partially hydrogenated soybean oils would result in changes in the fatty acid composition of the US diet consistent with current dietary recommendations.  相似文献   

19.
A high amount of good-quality vegetable oil in seeds has an overwhelming contribution to the groundnut (Arachis hypogaea L.) cultivation throughout the world. In order to take into account great variation in oil characteristics in Arachis subspecies and botanical varieties, 256 groundnut genotypes including ICRISAT’s mini core collection were investigated. Significant variability in oil content (31.7–57.0%) was detected among groundnut genotypes. Oil yield varied from 9.5 to 179.3 kg da?1 with the average being 67.7 kg da?1. Significant genotypic differences were also observed for all the fatty acids studied. Oleic and linoleic acids accounted for the major fraction with mean values of 45.3 and 32.1% in the ranges of 35.3–60.9% and 16.1–43.6%, respectively. Significant negative correlation was observed between oleic and linoleic acid. In the present investigation, desirable values were obtained for oil traits which would be useful to develop nutritional and health-beneficial cultivars.  相似文献   

20.
Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel‐related properties were determined. The fatty acid profile was also determined with saturated fatty acids comprising slightly more than 35 %, 16.5 % palmitic, 14.5 % stearic, as well as lesser amounts of even longer‐chain fatty acids. Linoleic acid is the most prominent acid at about 49 %. Corresponding to the high content of saturated fatty acid methyl esters, cold flow is the most problematic property as shown by a high cloud point of slightly >20 °C. Otherwise, the properties of G. sepium methyl esters are acceptable for biodiesel use when comparing them to specifications in biodiesel standards but the problematic cold flow properties would need to be observed. The 1H‐ and 13C‐NMR spectra of G. sepium methyl esters are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号