首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some new polyamidoethers have been synthesized by condensation reaction of N,N'-dichloroacetyl-1,4-phenylene-diamine with bisphenols (4,4'-isopropylidenediphenol, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, and 4,4'-dihydroxybiphenyl) in N-methylpyrrolidone medium using DB-24-Crown-8 as a phase-transfer catalyst. The structure of these polymers has been characterized by infrared (i.r.) and 1H nuclear magnetic resonance (NMR) spectroscopy. Kinetic method of thermal decomposition of these polymers and their 2% mixture with polyvinylchloride (PVC) has been studied.  相似文献   

2.
Polymer blends have received particular interest in the past several decades in both industrial and academic research. An initial survey of miscible polymer pairs (1) (1968) revealed 12 combinations. A later survey (2) (1979) noted approximately 180 miscible pairs. Today possibly over 500 miscible combinations have been noted in the open and patent literature (3). However, the vast majority of possible polymer blend combinations are not miscible (thus phase separated). A significant number of diverse polymer structures have been shown to exhibit miscibility with PVC. Several of these blends have been studied in detail and have shown specific interactions primarily involving the α-hydrogen and PVC (considered the proton donor in proton donor-proton acceptor hydrogen bonding type interactions). The blend of poly(?-caprolactone) with PVC illustrates this interaction and has been reported in many published papers. While polymer miscibility in PVC blends offers significant academic interest, industrial utility is also of considerable importance. The addition of low Tg, miscible polymers to PVC offers permanent plasticization. The addition of high Tg, miscible polymers to PVC yields the desired heat distortion temperature enhancement of rigid PVC. A specific example of permanent plasticization involves nitrile rubber blends which have been commercial since the early 1940's. This presentation will review the growing number of polymers noted to be miscible with PVC. The importance of specific interactions will be discussed.  相似文献   

3.
A natural plasticizer with multifunctional groups, similar in structure to phthalates, cardanol derivatives glycidyl ether (CGE) was synthesized from cardanol by a two‐step modification process and characterized by FT‐IR, 1HNMR, and 13CNMR. The resulting product was incorporated to PVC (CGE/PVC), and plasticizing effect was compared with PVC incorporated with two kinds of commercial phthalate ester plasticizers bis (2‐ethylhexyl) benzene‐1,4‐dicarboxylate (DOTP) and diisononyl phthalate (DINP). Dynamic mechanical analysis and mechanical properties testing of the plasticized PVC samples were performed in order to evaluate their flexibility, compatibility, and plasticizing efficiency. SEM was employed to produce fractured surface morphology. Thermogravimetric analysis and discoloration tests were used to characterize the thermal stabilities. Dynamic stability analysis was used to test the processability of formulations. Compared with DOTP and DINP plasticized samples, CGE/PVC has a maximum decrease of 9.27% in glass transition temperature (Tg), a maximum increase of 17.6% in the elongation at break, and a maximum increase of 31.59°C and 25.31 min in 50% weight loss (T50) and dynamic stability time, respectively. The obtained CGE also has slightly lower volatility resistance and higher exudation resistance than that of DOTP and DINP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42465.  相似文献   

4.
A novel bio‐based PVC plasticizer, levulinic acid pentaerythritol ketal ester (LAPKE), was synthesized and evaluated as renewable resource alternatives to traditional phthalate. The structure of LAPKE was characterized by FT‐IR, 1H NMR, and 13C NMR. The LAPKE and dioctyl phthalate (DOP) at different mass ratio were added to the PVC to prepare PVC samples. The mechanical properties of PVC samples at mass ratio of 1:1 showed that its tensile strength, elongation at break was up to an optimum value. The thermal stability was measured by dynamic thermal stability and thermogravimetric analysis (TGA), and the results showed that the thermal ability of PVC was improved with the addition of LAPKE. The weight loss of migration property (volatility, leaching test and exudation) has also increased by increasing mass ratio of LAPKE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44227.  相似文献   

5.
Adenine was used as a precursor to obtain antibacterial poly(vinyl chloride) (PVC). Adenine functionalized PVC has been prepared, characterized, and its antibacterial activity was evaluated. Chemical modification reaction of PVC was performed with adenine in two molar ratios (2:1 and 4:1). Fourier-transform infrared spectroscopy and 1HNMR spectroscopic analyses confirmed the chemical structure of the adenine-modified PVC and indicated the incorporation of adenine molecule in the backbone chains of PVC. Photostability of the prepared modified PVC was determined by measuring the changes in molecular weights using Gel permeation chromatography technique as well as the extent of discoloration of UV irradiated samples while thermal stability was studied by measuring the rate of dehydrochlorination and thermogravimetric analysis. Morphological investigation in terms of scanning electron microscopy was studied. Antibacterial activities of the two modified PVC samples were investigated against two types of Gram-positive bacterial strains (Bacillus subtitles, Staphylococcus aurous, and Streptococcus faecalis) while the other types (Escherichia coli, Neisseria gonorrhea, and Pseudomonas aeruginosa) represented the Gram-negative type bacteria. Antibacterial activity of PVC-adenine blend was also investigated for comparison. Minimum inhibition concentration was performed for some PVC samples under study.  相似文献   

6.
In recent years, the using of reproducible resource and economical and efficient synthesis method has got wide concern. Herein, an environmental‐friendly plasticizer originated from cardanol was synthesized by click chemistry. First, the cardanol sulfide (CS) was obtained by click chemistry reaction between the double bond of the side chain of cardanol and mercaptoethanol. The degree of the click reaction was estimated to reach 84.7% by testing the content of sulfur. Then, the epoxidation of the hydroxyl was performed to get cardanol based epoxy plasticizer (CEP) in the presence of epichlorohydrin. The epoxy value was 0.32. The structure of CS and CEP was confirmed by FT‐IR and NMR techniques. A Haake torque rheometer was used to research the action of CEP on polyvinyl chloride (PVC). Results showed that it possessed favorable plasticization effect and stabilization effect on PVC. CEP had good heat stabilization in PVC, and could decrease the Tg of PVC significantly. Moreover, CEP could increase the tensile strength of PVC when in a small amount, and could increase the plasticity of PVC when in a larger quantity significantly. The characteristics of volatile, migration and solvent extraction of PVC plasticized by CEP is similar to by dioctyl phthalate (DOP). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44890.  相似文献   

7.
This work aimed to manufacture bioplastics with mechanical and electrical properties for monitoring the Rhizopus stolonifer growth in tomato fruit packaging. Bioplastics were based on chitosan/polyvinyl alcohol (Ch/PVA), chitosan/polyvinyl pyrrolidone (Ch/PVP), and nanoparticles (NPs) of plant extracts at 10% and 30% of concentrations. Bioplastics were exposed to tomato inoculated with R. stolonifer for 6 d at 25°C. Water vapor permeability (WVP), mechanical properties, FTIR, UV–vis, morphology, electrical resistance of bioplastics, and the NPs size were assessed. In bioplastics added with plant extracts, 1.5 times more WVP than in the control group (18–35 gs−1m−1Pa−1) were quantified. Ch/PVA bioplastic showed 51% more tensile strength, 44% more elongation at break, and 40% more Young's modulus than Ch/PVP, regardless of the plant extract. The electrical resistance in Ch/PVA bioplastics with 30% mushroom extract and 10% radish allowed the differentiation between inoculated (109–1010 Ω) and non-inoculated tomatoes (1010–1011 Ω). The FTIR assay confirmed the presence of each compound used in the bioplastic, and UV–vis confirmed phenols at 300 nm. The NPs measured less than 50 nm. Only Ch/PVA with 30% mushroom and 10% radish can be useful to monitor fungi in tomatoes based on their electrical behavior.  相似文献   

8.
A novel ion‐imprinted membranes were synthesized for selective removal and preconentration for Ag(I) ions from aqueous solutions. The membranes were obtained via crosslinking of chitosan (CS), PVA, and blend chitosan/PVA using glutaraldehyde (GA) as crosslinker. The FTIR spectra were used to confirm the membrane formation. Comparing with the nonimprinted membranes, Ag(I)‐imprinted CS and CS/PVA has higher removal capacity and selectivity for Ag+ ions. An enhancement in the Ag+ removal capacity by ~ 20% (from 77.8 to 94.4 mg g–1) and ~ 50% (from 83.9 to 125 mg g–1) was found in the Ag(I)‐imprinted CS and Ag(I)‐imprinted CS/PVA membranes, respectively, when compared with the nonimprinted membranes. Removal equilibra was achieved in about 40 min for the non‐ and ion‐imprinted CS/PVA. The pH and temperature significantly affected the removal capacity of ion‐imprinted membrane. The relative selectivity coefficient values of Ag+/Cu2+ and Ag+/Ni2+ are 9 and 10.7 for ion‐imprinted CS membrane and 11.1 and 15 for ion‐imprinted CS/PVA membrane when compared with nonimprinted membranes. The imprinted membranes can be easily regenerated by 0.01M EDTA and therefore can be reused at least five times with only 15% loss of removal capacity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Using the Weissenberg rheogoniometer, a technique has been developed which facilitates the measurement of shear stress data and which substantially overcomes the problem of sample loss that normally occurs at high shear rates. Using this technique, the apparent viscosities of PVC pastes based upon four different PVC paste polymers plasticized with dialphyl phthalate have been determined at a number of shear rates up to 9000 sec?1 and the viscosity aging characteristics of these paste polymers have been compared. The effect of several common plasticizers upon PVC paste viscosity and viscosity aging have been studied at shear rates of the order of 10 sec?1 and 1000 sec?1.  相似文献   

10.
The aim of this study is to improve the performance of blends made from recycled polyvinyl chloride (PVC), coming from credit card waste, so that these blends can be used for those applications that must fulfil some requirements with regard to mechanical properties and stability with temperature alterations. With this aim in mind, two polymers of styrenic origin have been combined: styrene acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS). These polymers are characterized by a satisfactory balance of mechanical properties and thermal stability. PVC blends with both virgin and recycled styrenic polymers have been studied throughout the entire range of compositions. The prior degradation of the recycled materials has been studied by means of Fourier transformed infrared spectroscopy (FTIR).The behavior of the observed Tg values has been analyzed using differential scanning calorimetry (DSC), and the existence of partial miscibility between the different components has been studied. The mechanical properties have been determined using tensile and Charpy impact tests. The thermal stability of the PVC blends with temperature changes has been determined using the Vicat softening temperature (VST). Finally, the fracture surface of the various blends has been analyzed using scanning electron microscopy (SEM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2464–2471, 2006  相似文献   

11.
Four side-chain maleimide-styrene polymers have been synthesized from maleimide-alt-styrene copolymer (MASt) and some original azo-moieties using polymer analogous reactions. The structures have been obtained with good yields; remarkably, they showed a high chromophore load, up to ~100%. The polymers were characterized by means of SEC, FT-IR, 1H-NMR, DSC-TGA, and elemental analysis. The side-chain polymers exhibited improved solubility and enhanced thermal stability up to 320oC, while their glass transition temperatures have been found to be as high as 210oC. The third-order NLO refraction (n2) and susceptibility χ(3) coefficients were measured by Z-scan technique. The results of Z-scan measurements showed that the polymers have only nonlinear refraction, the nonlinear absorption being negligible.  相似文献   

12.
The new monomer, 5′-O-methacryloyl-3′-azido-3′-deoxythymidine (MAZT), was synthesized by the reaction of methacryloyl chloride and 3′-azido-3′-deoxythymidine (AZT). Poly(MAZT) and copolymers of MAZT with vinyl acetate (VAc) and maleic anhydride (MAH) were synthesized by radical polymerizations. The synthesized MAZT and polymers were identified by 1H nuclear magnetic resonance (NMR), 13C NMR, elemental analysis and gel permeation chromatography. The quantities of MAZT units in poly(MAZT-co-VAc) and poly(MAZT-co-MAH) were 45 and 27 mol%, respectively. The weight average molecular weights of the polymers synthesized were in the range from 8800 to 17600. The in vitro cytotoxicities of samples against K562 human leukaemia cell line at 100 μg ml-1 decreased in the following order: poly(MAZT-co-MAH) > poly(MAZT-co-VAc) > poly(MAZT) > MAZT > AZT. The in vivo anti-tumour activities of the polymers synthesized against Balb/C mice bearing sarcoma 180 tumour cells were greater than those of 5-fluorouracil at all concentrations.  相似文献   

13.
Three soluble, thermally stable azomethine polymers were synthesized by the oxidative polycondensation of azomethine bisphenols using NaOCl as an oxidant in aqueous alkaline medium. The azomethine bisphenol monomers, 4,4′-oxybis[N-(2-hydroxy-3-methoxybenzilidine)aniline], 4,4′-oxybis[N-(2-hydroxy-5-bromobenzilidine)aniline] and 4,4′-oxybis[N-(2-hydroxynaphthalidine) aniline] were synthesized by the condensation of 4,4′-oxydianiline with three aromatic aldehydes. The structures of the monomers and polymers were confirmed by Fourier Transform infrared spectroscopy, UV–visible, 1H-NMR and 13C-NMR spectroscopic techniques. Morphology of the synthesized polymers was characterized using scanning electron microscope. The thermal stability of the polymers is evidenced by high carbines residue obtained in TGA. Fluorescence spectra showed that the emission maxima centred in the region 420–460 nm for all the compounds with large stokes shift values (?λST). Electrical conductivity of iodine-doped polymers was measured by four-point probe technique. The synthesized polymers have shown good electrical conductivity on iodine doping, and it increases with the increase in iodine vapour contact time. The self-extinguishing property of the synthesized polymers was studied by the calculation of the limiting oxygen index values with van Krevelen’s equation.  相似文献   

14.
pH and temperature dual‐sensitive protein imprinted microspheres with high absorption capacity have been successfully synthesized on the surface of SiO2 using chitosan grafted N‐isopropylacrylamide (CS‐g‐NIPAM) as the pH and temperature sensitive monomer, with acrylamide as comonomer, N,N′‐methylenebisacrylamide as the crosslinking agent and bovine serum albumin (BSA) as the template protein. The pH and temperature dual‐sensitivity was also investigated. The results showed that the adsorption capacity and imprinting factor improved slowly with increasing incubation pH from 4.6 to 7.0, and then decreased sharply in alkaline conditions due to the reduction of non‐specific binding from electrostatic and hydrogen bonding interactions. Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the polymers. The as‐prepared SiO2@BSA molecularly imprinted polymers were also found to have high adsorption capacity (119.88 mg g?1) within 2 h, an excellent imprinting factor (α = 2.25), specific selectivity and good reusability. © 2019 Society of Chemical Industry  相似文献   

15.
A new monomer, 1,2,3‐tris(ethoxycarbonyl)‐2‐propyl acrylate (TPA), was synthesized by reaction of acryloyl chloride and triethyl citrate. The homopolymer of TPA and its copolymers with acrylic acid (AA), vinyl acetate (VAc) and maleic anhydride (MAH) were prepared by polymerization using lauroyl peroxide (LPO) at 70 °C for 24 h. The structures of TPA and its polymers were identified by FTIR, 1H NMR, 13C NMR spectroscopies, and elemental analysis. The number average molecular weights and polydispersity indices of the synthesized polymers determined by GPC were in the range 4200–23 000 g mol?1 and 1.1–2.1, respectively. The IC50 values of the synthesized samples against cancer cell lines were greater than those of 5‐fluorouracil (5‐FU). The percentage inhibition values of SV40 DNA replication were 82.2 for TPA, 34.3 for poly (TPA), 81.9 for poly(TPA‐co‐AA), 82.0 for poly(TPA‐co‐VAc), 35.6 for poly(TPA‐co‐MAH) and 12.7 for 5‐FU. The inhibitions of SV40 DNA replication and antiangiogenesis for the synthesized TPA and its polymers are much greater than those of the control. © 2001 Society of Chemical Industry  相似文献   

16.
Poly(vinyl chlorides) (PVC) constitute a major class of synthetic plastics, Many surveys of the voluminous literature have been performed. This report reviews the literature published in English from 1969 through 1984 and endeavors to be more interpretive than comprehensive. PVC compounds, in general, are among the more fire resistant common organic polymers, natural or synthetic. The major products of thermal decomposition include hydrogen chloride, benzene and unsaturated hydrocarbons. In the presence of oxygen, carbon monoxide, carbon dioxide and water are included among the common combustion products. The main toxic products from PVC fires are hydrogen chloride (a sensory and pulmonary irritant) and carbon monoxide (an asphyxiant). The LC50 value calculated for a series of natural and synthetic materials thermally decomposed according to the NBS toxicity test method ranged from 0.045 to 57 mg l?1 in the flaming mode and from 0.045 to > 40 mg l?1 in the non-flaming mode. The LC50 results for a PVC resin decomposed under the same conditions were 17 mg l?1 in the flaming mode and 20 mg l?1 in the non-flaming mode. These results indicate that PVC decomposition products are not extremely toxic when compared with those from other common building materials. When the combustion toxicity (based on their HCI content) of PVC materials in compared with pure HCI experiments, it appears that much of the post-exposure toxicity can be explained by the HCI that is generated.  相似文献   

17.
Polyesters were synthesized by direct polycondensation of thiophene‐2,5‐dicarboxylic acid and five different silarylene‐containing diphenols using a tosyl chloride/pyridine/N,N‐dimethylformamide system as a condensing agent. Polymers were obtained in good yields and were characterized using Fourier transform infrared and NMR (1H, 13C, 135‐DEPT and 29Si) spectroscopy and elemental analysis. All polymers were completely soluble in aprotic organic polar solvents such as dimethylformamide, dimethylsulfoxide and N‐methyl‐2‐pyrrolidone. The range of effective mass of the polymers (m/z) was 1 × 105–2 × 105, determined using electrospray ionization mass spectrometry. Asymmetry and steric hindrance prevented dense packing of the polymeric chains, showing glass transition temperatures between ? 78 and ? 51 °C and loss of thermal stability at 177–199 °C (10% weight loss). Additionally, the melting points of the polyesters were found to be in the range 62–67 °C. Because of this, the samples were semi‐solid at room temperature. The optical band gaps of the polymers were observed between 4.54 and 4.48 eV, corresponding in all cases to insulator behavior. The molecular structure of the samples was studied using X‐ray diffraction, showing a degree of order that was associated with two monoclinic lattices. Additionally, the conductivity was studied using a two‐point method with contacts on top of polymer films. Prior to the electrical measurement, the samples were polarized in an external electric field of 0.8 to 6.4 V cm?1, and the alignment of the dipoles increased the electrical conductivity. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
Coincidence Doppler broadening spectroscopy (CDBS), known for its exceptional precision, is extensively employed in examining the electronic states of polymers. In this study, polyvinyl chloride (PVC)–ethyl vinyl acetate (EVA) polymers blends were prepared using conventional techniques, following specific ratios (75:25, 50:50, and 25:75, respectively). Spectroscopic analysis reveals that the longitudinal component of linear momentum surpasses the momentum unit (i.e., 10−3 m0c) when considering the ratio curve associated with the participation of oxygen core electrons. When compared to non-polymer samples, the PVA polymer and PVA–EVA polymer blend exhibit greater free volume voids in contrast to non-polymer structural defects. Furthermore, the annihilation of ortho-positronium with core electrons, likely EVA oxygen core electrons, contributes to the measured free volume voids. An increased annihilation of positrons or positroniums by oxygen in the CDBS spectrum leads to higher calculated W parameter values. Conversely, as the PVC content increases, the W parameter decreases, suggesting reduced ortho-positronium annihilation and consequently, enhanced formation of para-positronium in the overall annihilation process. In summary, this investigation demonstrates the utility of CDBS in elucidating the electronic states and free volume voids in PVC and EVA polymers.  相似文献   

19.
Simple, direct precipitation was used to synthesize green, renewable, biobased flame retardants. Copper phytate (Cu–Phyt), zinc phytate, aluminum phytate, and tin phytate (Sn–Phyt) were synthesized. Thermogravimetric analysis performed in N2 revealed that the metallic phytate (M–Phyt, where M is Cu, Zn, Al, or Sn) salts showed good charring. The limiting oxygen index (LOI), cone calorimetry (CONE) test data, tensile strength, and impact toughness were measured for flexible poly(vinyl chloride) (PVC) containing 15 wt % M–Phyt salts. The PVC/Sn–Phyt LOI rose from 24.9 to 30.3%, and the PVC/Sn–Phyt mechanical properties were on par with those of the pure PVC. The CONE test results indicate that PVC/Cu–Phyt showed the lowest total smoke production (TSP) and peak heat‐release rate (pHRR) among the samples. The TSP and pHRR of PVC/Cu–Phyt were 15.77 m2 and 181.77 kW/m2, respectively, 62.63 and 44.48% lower than those of the neat PVC. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46601.  相似文献   

20.
The miscibility of poly(vinyl chloride)/poly(methylmethacrylate) (PVC/PMMA) system was improved by introducing some pyrrolidone units into the main chains of PMMA. For that purpose, we have synthesized two copolymers of poly(methylmethacrylate‐co‐vinylpyrrolidone) (MMVP) through a radical polymerization and carried out a comparative study of PVC/MMVP blends by inverse gas chromatography (IGC) and differential scanning calorimetry (DSC) methods. The adequacy of seven n‐alkane probes has been tested to determine the thermodynamic parameters. The miscibility of the two systems has been proved by a single Tg for each blend. This observation was also confirmed by DSC analysis. To highlight the presence of interaction and its intensity between PVC and MMVP in the blends, the polymer–polymer interaction parameters have been evaluated by IGC trough which the influence of the solute has been resolved. The Schneider approach confirmed the miscibility of these systems as the K deviates positively from unity. The miscibility has been appeared highlighted from the positive difference in surface energy between the pure polymers and their blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号