首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.  相似文献   

3.
Intensive research on chiral liquid crystals (LCs) has been fueled by their actively tunable physicochemical properties and structural complexity, comparable to those of sophisticated natural materials. Herein, recent progress in the discovery of new classes of chiral LCs, enabled by a combination of nano- and macroscale investigations is reviewed. First, an overview is provided of liquid crystalline phases, made of chiral and achiral low-weight molecules, that exhibit chiral structure and/or chiral morphology. Then, recent progress in the discovery of new classes of chiral LCs, particularly enabled by the application of resonant X-ray scattering is described. It is shown that the method is sensitive to modulations of molecular orientation and therefore provides information hardly accessible by means of other techniques, such as the sense of helical structures or chirality transfer across length scales. Finally, a perspective is presented on the future scope, opportunities, and challenges in the field of chiral LCs, in particular related to nanocomposites.  相似文献   

4.
Orientation control of ordered materials would not only produce new physical phenomenon but also facilitate the development of fancy devices. Discotic liquid crystals (DLCs) form 1D charge transport pathway by self‐organizing into columnar nanostructures via π–π stacking. However, controlling the electrical properties in such nanostructures with some direct and instant way is a formidable task for their high viscosity and insensitivity to external stimuli. Herein, the arbitrary control over electrical conductivity of such columnar nanostructures is achieved with UV light by incorporating DLCs with molecular motors. Highly ordered DLC microstripe arrays are generated on desired substrate through a capillary bridge dewetting strategy. The conductivity of the microstripes could be continuously modulated by 365 nm light due to the influence of molecular motion under UV irradiation on the electron orbital overlap of columnar nanostructures. This is so because the disorder degree of the DLC molecules is associated with the intensity of UV light and the doping concentration of molecular motors. Moreover, the device shows memory effect and reversible conductivity change. The DLC microstripe arrays are very promising for the applications in UV detectors, memory devices, optical switches, and so on.  相似文献   

5.
Cholesteric liquid crystals (CLCs), also known as chiral nematic LCs, show a photonic stopband, which is promising for various optical applications. In particular, CLCs confined in microcompartments are useful for sensing, lasing, and optical barcoding at the microscale. The integration of distinct CLCs into single microstructures can provide advanced functionality. In this work, CLC multishells with multiple stopbands are created by liquid–liquid phase separation (LLPS) in a simple yet highly controlled manner. A homogeneous ternary mixture of LC, hydrophilic liquid, and co-solvent is microfluidically emulsified to form uniform oil-in-water drops, which undergo LLPS to form onion-like drops composed of alternating CLC-rich and CLC-depleted layers. The multiplicity is controlled from one to five by adjusting the initial composition of the ternary mixture, which dictates the number of consecutive steps of LLPS. Interestingly, the concentration of the chiral dopant becomes reduced from the outermost to the innermost CLC drop due to uneven partitioning during LLPS, which results in multiple stopbands. Therefore, the photonic multishells show multiple structural colors. In addition, dye-doped multishells provide band-edge lasing at two different wavelengths. This new class of photonic multishells will provide new opportunities for advanced optical applications.  相似文献   

6.
7.
8.
The anisotropy of the viscosity and shear-induced structural changes are studied via nonequilibrium molecular dynamics (NEMD) simulations for two types of model liquid crystals which possess both isotropic and smectic phases. These models are (a) perfectly oriented Gay–Berne particles and (b) r –12-soft-spheres plus an r –6-interaction with a P 2-anisotropy. Results are presented for the Miesowicz viscosity coefficients in the nematic phase. Presmectic effects are observed. Structural changes are revealed by snapshots of configurations and by the static structure factor, presented in analogy to scattering experiments. The shear-induced transition from the smectic to the nematic phase is analyzed. Similarities between magnetorheological fluids and discotic systems which can form columnar phases are discussed.  相似文献   

9.
Biological liquid crystals, a rich set of soft materials with rod‐like structures widely existing in nature, possess typical lyotropic liquid crystalline phase properties both in vitro (e.g., cellulose, peptides, and protein assemblies) and in vivo (e.g., cellular lipid membrane, packed DNA in bacteria, and aligned fibroblasts). Given the ability to undergo phase transition in response to various stimuli, numerous practices are exercised to spatially arrange biological liquid crystals. Here, a fundamental understanding of interactions between rod‐shaped biological building blocks and their orientational ordering across multiple length scales is addressed. Discussions are made with regard to the dependence of physical properties of nonmotile objects on the first‐order phase transition and the coexistence of multi‐phases in passive liquid crystalline systems. This work also focuses on how the applied physical stimuli drives the reorganization of constituent passive particles for a new steady‐state alignment. A number of recent progresses in the dynamics behaviors of active liquid crystals are presented, and particular attention is given to those self‐propelled animate elements, like the formation of motile topological defects, active turbulence, correlation of orientational ordering, and cellular functions. Finally, future implications and potential applications of the biological liquid crystalline materials are discussed.  相似文献   

10.
11.
A novel method for synthesizing and photopatterning colloidal crystals via light-responsive DNA is developed. These crystals are composed of 10–30 nm gold nanoparticles interconnected with azobenzene-modified DNA strands. The photoisomerization of the azobenzene molecules leads to reversible assembly and disassembly of the base-centered cubic (bcc) and face-centered cubic (fcc) crystalline nanoparticle lattices. In addition, UV light is used as a trigger to selectively remove nanoparticles on centimeter-scale thin films of colloidal crystals, allowing them to be photopatterned into preconceived shapes. The design of the azobenzene-modified linking DNA is critical and involves complementary strands, with azobenzene moieties deliberately staggered between the bases that define the complementary code. This results in a tunable wavelength-dependent melting temperature (Tm) window (4.5–15 °C) and one suitable for affecting the desired transformations. In addition to the isomeric state of the azobenzene groups, the size of the particles can be used to modulate the Tm window over which these structures are light-responsive.  相似文献   

12.
13.
14.
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.  相似文献   

15.
Self‐organized nano‐ and microstructures of soft materials are attracting considerable attention because most of them are stimuli‐responsive due to their soft nature. In this regard, topological defects in liquid crystals (LCs) are promising not only for self‐assembling colloids and molecules but also for electro‐optical applications such as optical vortex generation. However, there are currently few bottom‐up methods for patterning a large number of defects periodically over a large area. It would be highly desirable to develop more effective techniques for high‐throughput and low‐cost fabrication. Here, a micropixelated LC structure consisting of a square array of topological defects is stabilized by photopolymerization. A polymer network is formed on the structure of a self‐organized template of a nematic liquid crystal (NLC), and this in turn imprints other nonpolymerizable NLC molecules, which maintains their responses to electric field and temperature. Photocuring of specific local regions is used to create a designable template for the reproducible self‐organization of defects. Moreover, a highly diluted polymer network (≈0.1 wt% monomer) exhibits instant on–off switching of the patterns. Beyond the mere stabilization of patterns, these results demonstrate that the incorporation of self‐organized NLC patterns offers some unique and unconventional applications for anisotropic polymer networks.  相似文献   

16.
Internally triggered motion of an object owns important potential in diverse application areas ranging from micromachines, actuator or sensor, to self‐assembly of superstructures. A new conceptual liquid metal machine style has been presented here: the transient state machine that can work as either a large size robot, partial running elements, or just divide spontaneously running swarm of tiny motors. According to need, the discrete droplet machines as quickly generated through injecting the stream of a large liquid metal machine can combine back again to the original one. Over the process, each tiny machine just keeps its running, colliding, bouncing, or adhesion states until finally assembling into a single machine. Unlike the commonly encountered rigid machines, such transient state system can be reversible in working shapes. Depending on their surface tension, the autonomously traveling droplet motors can experience bouncing and colliding before undergoing total coalescence, arrested coalescence, or total bounce. This finding would help mold unconventional robot in the sense of transient state machine that could automatically transform among different geometries such as a single or swarm, small or large size, assembling and interaction, etc. It refreshes people's basic understandings on machines, liquid metal materials, fluid mechanics, and micromotors.  相似文献   

17.
We have evaluated the Green–Kubo relations for the viscosities of a biaxial nematic liquid crystal by performing equilibrium molecular dynamics simulations. The viscosity varies by more than two orders of magnitude depending on the orientation of the directors relative to the streamlines. The molecules consist of nine fused Gay–Berne oblates whose axes of revolution are parallel to each other and perpendicular to the line joining their centers of mass. This gives a biaxial body, the length-to-width-to-breadth ratio of which is equal to 5:1:0.4. The numerical evaluation of the Green–Kubo relations for the viscosities is facilitated by the application of a Gaussian director constraint algorithm that makes it possible to fix the directors in space. This does not only generate an inertial director-based frame but also a new equilibrium ensemble. In this ensemble the Green–Kubo relations for the viscosities are simple linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble.  相似文献   

18.
19.
溶致液晶材料在水中会形成聚合物,聚合物的长度会随着温度而改变,因此可以通过改变溶液的温度来改变聚合物的长度,从而在一定的温度和浓度范围内产生液晶相.研究了一种名为蓝色27的阴丹酮衍生物(C28-H18O10N4C12)的溶致液晶材料.实验发现,20℃时封装在玻璃盒中的浓度为4.5%的蓝色27水溶液样品的透光率随着搁置时间的延长明显增加,计算结果表明,样品的有序度会随着时间的延长而增加,这种增加与系统中聚合物长度随着搁置时间变长有关.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号