首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The solubilities of H2S and CO2 in four protic ionic liquids (PILs)—methyldiethanolammonium acetate, methyldiethanolammonium formate, dimethylethanolammonium acetate, and dimethylethanolammonium formate were determined at 303.2–333.2 K and 0–1.2 bar. It is shown PILs have higher absorption capacity for H2S than normal ionic liquids (ILs) and the Henry's law constants of H2S in PILs (3.5–11.5 bar at 303.2 K) are much lower than those in normal ILs. In contrast, the solubility of CO2 in PILs is found to be a magnitude lower than that of H2S, implying these PILs have both higher absorption capacity for H2S and higher ideal selectivity of H2S/CO2 (8.9–19.5 at 303.2 K) in comparison with normal ILs. The behavior of H2S and CO2 absorption in PILs is further demonstrated based on thermodynamic analysis. The results illustrate that PILs are a kind of promising absorbents for the selective separation of H2S/CO2 and believed to have potential use in gas sweetening. © 2014 American Institute of Chemical Engineers AIChE J 60: 4232–4240, 2014  相似文献   

2.
Developing absorbents with both high absorption capacity of H2S and large selectivity of H2S/CO2 is very important for natural gas sweetening process. To this end, a class of novel hydrophobic protic ionic liquids (ILs) containing free tertiary amine group as functional site for the absorption of H2S were designed in this work. They were facilely synthesized through a simple neutralization‐metathesis methodology by utilizing diamine compounds and bis(trifluoromethylsulfonyl)imide as the building blocks for cation and anion, respectively. Impressively, the solubility of H2S can reach 0.546 mol mol?1 (1 bar) and 0.225 mol mol?1 (0.1 bar), and the selectivity of H2S/CO2 can reach 37.2 (H2S solubility at 1 bar vs. CO2 solubility at 1 bar) and 15.4 (H2S solubility at 0.1 bar vs. CO2 solubility at 1 bar) in the hydrophobic protic ILs at 298.2 K. Comparing the hydrophobic protic ILs with other absorbents justifies their superior performance in the selective absorption of H2S from CO2. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4480–4490, 2016  相似文献   

3.
Carbon dioxide separation from CH4 is important to the environment and natural gas processing. Poly (ionic liquid)s (PILs) based on polyurethane structures are considered as potential materials for CO2 capture. Thus, a series of anionic PILs based on polyurethane were synthesized. The effects of polyol chemical structure and counter-cations (imidazolium, phosphonium, ammonium, and pyridinium) in CO2 sorption capacity and CO2/CH4 separation performance were evaluated. The synthesized PILs were characterized by NMR, DSC, TGA, dinamical mechanical thermo analysis (DMTA), SEM, and AFM. CO2 sorption, reusability, and CO2/CH4 selectivity were assessed by the pressure-decay technique. The counter-cation and polyol chemical structure play an important role in CO2 sorption and CO2/CH4 selectivity. PILs exhibited competitive thermal mechanical properties. Results showed that PILPC-TBP was the best poly (ionic liquid) for CO2/CH4 separation. Moreover, poly (liquid ionic) base polyol (polycarbonate) with phosphonium (PILPC-TBP) demonstrated higher CO2 sorption capacity (21.4 mgCO2/g at 303.15 K and 0.08 MPa) as compared to other reported poly (ionic liquids). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47536.  相似文献   

4.
The linear gradient theory (LGT) of fluid interfaces in combination with the cubic-plus-association equation of state (CPA EOS) is applied to determine the interfacial tensions of (CH4+N2)+H2O and (N2+CO2)+H2O ternary mixtures from 298–373 K and 10–300 bar. First, the pure component influence parameters of CH4, N2, CO2 and H2O are obtained. Then, temperature-dependent expressions of binary interaction coefficient for (CH4+H2O), (N2+H2O) and (CO2+H2O) are correlated. These empirical correlations of pure component influence parameters and binary interaction coefficients are applied for ternary mixtures. For (CH4+N2)+H2O and (N2+CO2)+H2O mixtures, the predictions show good agreement with experimental data (overall AAD~1.31%).  相似文献   

5.
Deep eutectic solvents (DESs) are a class of promising media for gas separation. In order to examine the potential application of DESs for natural gas upgrading, the solubilities of H2S, CO2, and CH4 in choline chloride (ChCl) plus urea mixtures were measured in this work. The solubility data were correlated with Henry's law equation to calculate the thermodynamic properties of gas absorption processes, such as Henry's constants and enthalpy changes. Grand-canonical Monte Carlo simulations and quantum chemistry calculations were also performed to examine the mechanism of gas absorption processes. It is found that the absorption of H2S in ChCl + urea mixtures is governed by the hydrogen-bond interaction between Cl of ChCl and H of H2S, whereas the absorption of CO2 and CH4 in ChCl+urea mixtures is governed by the free volume of solvents. Based on the different behavior of gas absorption, high H2S/CO2, H2S/CH4, and CO2/CH4 selectivities can be achieved by adjusting the ratio of ChCl/urea in mixtures.  相似文献   

6.
The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce0.6Zr0.4O2/Al2O3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH4:CO2:air was fixed as 1.0:0.70:0.95. The effects of temperature (800–860°C), pressure (1–6?bar), and H2O/CH4 molar feed ratio (0.23–0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. At 860°C, CO2 conversion increased from 4 to 61% and H2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6?bar. CO2 conversion and H2/CO molar ratio were also influenced by the temperature and H2O/CH4 molar ratio. At 3?bar, CO2 conversion varied between 4 and 43% and the H2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860°C. At 3?bar and 860°C, CO2 conversion decreased from 35 to 8% and H2/CO molar ratio increased from 1.7 to 2.4 when the H2O/CH4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.  相似文献   

7.
Direct interfacial molecular dynamics simulations are used to obtain the phase behavior and interfacial tension of CO2–H2O–NaCl mixtures over a broad temperature and pressure range (50°C ≤ T ≤ 250°C, 0 ≤ P ≤ 600 bar) and NaCl concentrations (1–4 mol/kg H2O). The predictive ability of several existing water (SPC and TIP4P2005), carbon dioxide (EPM2 and TraPPE), and sodium chloride (SD and DRVH) models is studied and compared, using conventional Lorentz–Berthelot combining rules for the unlike‐pair parameters. Under conditions of moderate NaCl molality (~1 mol/kg H2O), the predictions of the CO2 solubility in the water‐rich and CO2‐rich phase resemble those in the CO2–H2O system [Liu et al., J Phys Chem B. 2011;115:6629–6635]. Consistent with our previous work, the TraPPE/TIP4P2005 model combination gives the best overall performance in predicting coexistence composition and pressure in the water‐rich phase. Critical assessments are also made on the ranges of temperature and pressure where particular model combinations work better. The dependence of the interfacial tension on temperature and pressure is better predicted by the TraPPE/TIP4P2005 and EPM2/SPC models, whereas the EPM2/TIP4P2005 model overestimates this property by 10–20%, possibly due to the inadequacy of the combining rules. It is also found that the interfacial tension increases with salt concentration, consistent with experimental observations. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3514–3522, 2013  相似文献   

8.
Adsorption equilibrium capacity of CO2, CH4, N2, H2 and O2 on periodic mesoporous MCM-41 silica was measured gravimetrically at room temperature and pressure up to 25 bar. The ideal adsorption solution theory (IAST) was validated and used for the prediction of CO2/N2, CO2/CH4, CO2/H2 binary mixture adsorption equilibria on MCM-41 using single components adsorption data. In all cases, MCM-41 showed preferential CO2 adsorption in comparison to the other gases, in agreement with CO2/N2, CO2/CH4, CO2/H2 selectivity determined using IAST. In comparison to well known benchmark CO2 adsorbents like activated carbons, zeolites and metal-organic frameworks (MOFs), MCM-41 showed good CO2 separation performances from CO2/N2, CO2/CH4 and CO2/H2 binary mixtures at high pressure, via pressure swing adsorption by utilizing a medium pressure desorption process (PSA-H/M). The working CO2 capacity of MCM-41 in the aforementioned binary mixtures using PSA-H/M is generally higher than 13X zeolite and comparable to different activated carbons.  相似文献   

9.
We demonstrate an effective strategy for capture and conversion of H2S in novel superbase protic ionic liquids (SPILs). It is found that the synthesized SPILs with the multiple active sites exhibit the unprecedented H2S uptake via chemical absorption (up to 1.81 mol mol−1 at 298.2 K and 1 bar). More importantly, H2S molecule is activated by these SPILs during the absorption process, so that the activated H2S can be converted further into high value-added thiols in situ with excellent yields under mild conditions (303.2 K and 1 bar) without any solvents and metallic catalysts. Since H2S-saturated SPILs can be regenerated by chemical conversion of absorbed H2S into thiols, thereby eliminating the higher input of energy consumption during the process of H2S stripping. This SPIL-mediated scheme provides an alternative approach for the capture and chemical conversion of H2S.  相似文献   

10.
Adsorption of pure carbon dioxide and methane was examined on activated carbon prepared from pine cone by chemical activation with H3PO4 to determine the potential for the separation of CO2 from CH4. The prepared adsorbent was characterized by N2 adsorption-desorption, elemental analysis, FTIR, SEM and TEM. The equilibrium adsorption of CO2 and CH4 on AC was determined at 298, 308 and 318 K and pressure range of 1–16 bar. The experimental data of both gases were analyzed using Langmuir and Freundlich models. For CO2, the Langmuir isotherm presented a perfect fit, whereas the isotherm of CH4 was well described by Freundlich model. The selectivity of CO2 over CH4 by AC (CO2: CH4=50: 50, 298K, 5 bar), predicted by ideal adsorbed solution theory (IAST) model, was achieved at 1.68. These data demonstrated that pine cone-based AC prepared in this study can be successfully used in separation of CO2 from CH4.  相似文献   

11.
The separation of CO2/CH4 is reported in detail by using zeolitic imidazolate framework (ZIF-8) membrane which was prepared on 3-aminopropyltriethoxysilane modified Al2O3 tube through microwave heating synthesis. Attributed to the preferential adsorption affinity of CO2 over CH4 and a narrow pore window of 0.34 nm, the ZIF-8 membrane shows high separation performances for the separation of CO2/CH4 mixtures. For the separation of equimolar CO2/CH4 mixture at 100°C and 2 bar feed (1 bar permeate) pressure, a CO2 permeance of 1.02 × 10?8 mol/m2· s· Pa and a CO2/CH4 selectivity of 6.8 are obtained, which is promising for CO2 separation.  相似文献   

12.
Thermodynamic analyses of the reforming of coke oven gas with gasification gas for syngas were investigated as a function of coke oven gas‐to‐gasification gas ratio (1–3), oxygen‐to‐methane ratio (0–1.56), pressure (25–35 bar) and temperature (700–1100 °C). Thermodynamic equilibrium results indicate that the operating temperature should be approximately 1100 °C and the oxygen‐to‐methane ratio should be approximately 0.39, where about 80 % CH4 and CO2 can be converted at 30 bar. Increasing the operating pressure shifts the equilibrium toward the reactants (CH4 and CO2); increasing the pressure from 25 to 35 bar decreases the conversion of CO2 from 73.7 % to 67.8 %. The conversion ratio of CO2 is less than that in the absence of O2. For a constant feed gas composition (7 % O2, 31 % gasification gas, and 62 % coke oven gas), a H2/CO ratio of about 2 occurs at temperatures of 950 °C and above. Pressure effects on the H2/CO ratio are negligible for temperatures greater than 750 °C. The steam produced has an effect on the hydrogen selectivity, but its mole fraction decreases with temperature; trace amounts of other secondary products are observed.  相似文献   

13.
《分离科学与技术》2012,47(5):1045-1073
Abstract

The design of a layered pressure swing adsorption unit to treat a specified off-gas stream is based on the properties of the adsorbent materials. In this work we provide adsorption equilibrium and kinetics of the pure gases in a SMR off-gas: H2O, CO2, CH4, CO, N2, and H2 on two different adsorbents: activated carbon and zeolite. Data were measured gravimetrically at 303–343 K and 0–7 bar. Water adsorption was only measured in the activated carbon at 303 K and kinetics was evaluated by measuring a breakthrough curve with high relative humidity.  相似文献   

14.
In this study, permeation of carbon dioxide (CO2) and methane (CH4) through the polycarbonate/polyethylene glycol (PC/PEG) blend membrane was investigated. The effect of PEG content (0–5 wt%) on the permeability and selectivity was studied. Permeability measurements were carried out at pressures of 1–7 bar and at room temperature. The membranes were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and density measurement. The results revealed that the PC/PEG blends are miscible/partially miscible without considerable micro-phase separation. The effect of PEG content and gas pressure on the diffusion and solubility of coefficients were also investigated and analyzed. It was concluded that the most influential parameter for the permeation is the diffusion coefficient of the gases. The permeability and selectivity decrease as the operating pressure and PEG content are increased. Furthermore, the results showed that the addition of 5 wt% of PEG into PC increases the CO2/CH4 selectivity from 26.6 ± 0.99 to 40.9 ± 2.14 (more than 53%) at 1 bar.  相似文献   

15.
In recent years, the interest for using biogas derived from biomass as fuel in solid oxide fuel cells (SOFCs) has increased. To maximise the biogas to electrical energy output, it is important to study the effects of the main biogas components (CH4 and CO2), minor ones and traces (e.g. H2S) on performance and durability of the SOFC. Single anode‐supported SOFCs with Ni–Yttria‐Stabilised‐Zirconia (YSZ) anodes, YSZ electrolytes and lanthanum‐strontium‐manganite (LSM)–YSZ cathodes have been tested with a CH4–H2O–H2 fuel mixture at open circuit voltage (OCV) and 1 A cm–2 current load (850 °C). The cell performance was monitored with electric measurements and impedance spectroscopy. At OCV 2–24 ppm H2S were added to the fuel in 24 h intervals. The reforming activity of the Ni‐containing anode decreased rapidly when H2S was added to the fuel. This ultimately resulted in a lower production of fuel (H2 and CO) from CH4. Applying 1 A cm–2 current load, a maximum concentration of 7 ppm H2S was acceptable for a 24 h period.  相似文献   

16.
The apparent densities of H2O–CO2, H2S–CO2, H2–CO2, and CH4–CO2 binary systems were determined at 308.15 K and different pressures. The concentration of the solutes was 0.3 mol%. The partial molar volumes (PMVs) of the solutes and isothermal compressibility of mixed fluids were calculated using the experimental data. The PMVs of the two polar solutes (H2O and H2S) in supercritical CO2 are negative, and a minimum can be observed in each PMV versus pressure curve at the pressure where isothermal compressibility of the fluid is largest. The absolute value of the minimum of H2O is smaller than that of H2S, probably because of the hydrogen bonding between water molecules. However, the PMVs of the two non-polar solutes are positive, and the maximum value of H2 is larger than that of CH4. The effect of molecular size and polarity on the intermolecular interactions between solutes and solvents were discussed.  相似文献   

17.
In view of the environmental hazards caused by SO2, the development of efficient SO2 capture technology has important practical significance. In this work, a low-viscosity protic ionic liquids containing imidazole (Im), ether linkage, and tertiary amine structure was synthesized by acid–base neutralization of tris(3,6-dioxaheptyl)amine (TMEA) and Im for SO2 absorption. The results showed that the solubility of SO2 in [TMEA][Im] reached 12.754 mol kg−1 at 298.2 K and 1 bar and the ideal selectivity of SO2/CO2 (1/1) is 141.7 at 1 bar. Furthermore, [TMEA][Im] can be reused and the SO2 absorption performance was not significantly reduced after five cycles. In addition, the absorption of low-concentration SO2 (2000 ppm) in [TMEA][Im] was also tested. Further spectroscopic research and thermodynamic analysis suggested that the high SO2 uptake by [TMEA][Im] was caused by the synergistic effect of physical and chemical absorption.  相似文献   

18.
Mixed Matrix Membranes (MMMs) of UiO-66-NH2 nanoparticles dispersed in Cellulose Acetate (CA) were prepared with filler loading of 2–20 wt%. MMMs were tested for the upgradation of model biogas (60%–40%) mixture of CH4/CO2 at a feed pressure of 2 bar and 1.5 bar. Detailed characterization of MMMs was performed with Fourier transform infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Field emission scanning electron microscopy (FESEM) to investigate the physical and thermal properties. MMMs formed are defects-free, voids-free, and without polymer rigidification, indicating a better filler polymer interface. MMMs showed improved CO2 permeability while retaining the CO2/CH4 selectivity. The 10 wt.% UiO-66-NH2/CA MMM showed optimum gas separation performance with CO2 permeability of 11 Barrer and CO2/CH4 selectivity of 10. The UiO-66-NH2/CA MMMs performed better when compared to the pure CA membrane. The experimental permeability and selectivity data were compared with the predicted data using Maxwell, Lewis–Nielsen, Higuchi, and Bruggeman's model.  相似文献   

19.
Pressure–composition isotherms were measured for the CO2/octadecyl acrylate system at 45.0, 80.0, and 100.0°C and at pressures up to 307 bar. This system exhibited type I phase behavior with a continuous mixture‐critical curve. The solubility of octadecyl acrylate for the CO2/octadecyl acrylate system increased as the temperature increased at a constant pressure. The experimental results for the CO2/octadecyl acrylate system were modeled with the Peng–Robinson equation of state. A good fit of the data was obtained with the Peng–Robinson equation of state with one adjustable parameter for the CO2/octadecyl acrylate system. Experimental cloud‐point data for the poly(octadecyl acrylate)/CO2/octadecyl acrylate system were measured from 36 to 193°C and at pressures up to 2100 bar, and the added octadecyl acrylate concentrations were 11.9, 25.9, 28.0, 35.0, and 40.0 wt %. Poly(octadecyl acrylate) dissolved in pure CO2 up to 250°C and 2100 bar. Also, adding 45.0 wt % octadecyl acrylate to the poly(octadecyl acrylate)/CO2 solution significantly changed the phase behavior. This system changed the pressure–temperature slope of the phase‐behavior curves from an upper critical solution temperature (UCST) region to a lower critical solution temperature region as the octadecyl acrylate concentration increased. Cloud‐point data to 150°C and 750 bar were examined for poly(octadecyl acrylate)/C2H4/octadecyl acrylate mixtures at octadecyl acrylate concentrations of 0.0, 15.0, and 45.0 wt %. The cloud‐point curve of the poly(octadecyl acrylate)/C2H4 system was relatively flat at 730 bar between 41 and 150°C. The cloud‐point curves of 15.0 and 45.0 wt % octadecyl acrylate exhibited positive slopes extending to 35°C and approximately 180 bar. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 372–380, 2002  相似文献   

20.
A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5-3), reaction temperature (573-1473 K) and pressure (1-25 atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer-Tropsch synthesis were at temperatures higher than 1173 K for CO2/CH4 ratio being 1 at which about 4 mol of syngas (H2/CO = 1) could be produced from 2 mol of reactants with negligible amount of carbon formation. Although temperatures above 973 K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073 K and CO2:CH4:O2 = 1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号