首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WAVE生物反应器是一种新型的摇床式生物反应器,是新近发展起来的一种细胞培养的技术平台。其通过摇动板带动细胞袋内的培养基产生波浪,促进营养物质的交换和氧气的传递;细胞袋一次性使用,无需清洗和验证;具有悬浮培养和贴壁培养的功能,现已广泛应用于培养HEK293细胞、昆虫细胞、CHO细胞、杂交瘤细胞、NSO细胞、果蝇细胞、BHK细胞、植物细胞、杀伤性T细胞、MDCK细胞、EFL细胞、酵母菌等以及重组蛋白和单克隆抗体的生产。本文就WAVE生物反应器的组成、特点及其在生物制品生产中的应用作一综述。  相似文献   

2.
Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes.  相似文献   

3.
There is an unmet need for simplified in vitro models of malignancy and metastasis that facilitate fast, affordable and scalable gene and compound analysis. “Adherent” cancer cell lines frequently release “free-floating” cells into suspension that are viable and can reattach. This, in a simplistic way, mimics the metastatic process. We compared the gene expression profiles of naturally co-existing populations of floating and adherent cells in SW620 (colon), C33a (cervix) and HeLa (cervix) cancer cells. We found that 1227, 1367 and 1333 genes were at least 2-fold differentially expressed in the respective cell lines, of which 122 were shared among the three cell lines. As proof of principle, we focused on the anti-metastatic gene NM23-H1, which was downregulated both at the RNA and protein level in the floating cell populations of all three cell lines. Knockdown of NM23-H1 significantly increased the number of floating (and viable) cells, whereas overexpression of NM23-H1 significantly reduced the proportion of floating cells. Other potential regulators of these cellular states were identified through pathway analysis, including hypoxia, mTOR (mechanistic target of rapamycin), cell adhesion and cell polarity signal transduction pathways. Hypoxia, a condition linked to malignancy and metastasis, reduced NM23-H1 expression and significantly increased the number of free-floating cells. Inhibition of mTOR or Rho-associated protein kinase (ROCK) significantly increased cell death specifically in the floating and not the adherent cell population. In conclusion, our study suggests that dynamic subpopulations of free-floating and adherent cells is a useful model to screen and identify genes, drugs and pathways that regulate the process of cancer metastasis, such as cell detachment and anoikis.  相似文献   

4.
Cell-to-cell communication plays a key role in the regulation of many natural biological processes. Recent advances in mammalian synthetic biology are making it possible to rationally engineer cell-to-cell communication for therapeutic and other purposes. Here, we review state-of-the-art engineering principles to control cell-to-cell communication, focusing on communication between mammalian cells with diffusible factors (e.g., small molecules or exosomes) or direct cell contact, and on interkingdom communication between mammalian cells and bacteria. Potential applications include construction of artificial tissues able to perform complex computations, sophisticated cell-based cancer therapies, use of mammalian cells as a new class of cargo delivery modality, development of design principles to control pattern formation of cell populations, and treatment of infectious diseases. We also discuss the challenges facing practical applications, and possible enabling technologies to overcome them.  相似文献   

5.
Membrane‐embedded proteins (MPs) are central to a wide range of cellular processes. Despite their importance, structural studies of MPs are hindered by expression difficulties and the need for stabilization in a membrane‐mimicking environment. High‐resolution NMR methods can investigate structure and function of MPs due to methodological advances and new membrane‐like assemblies for stabilization of MPs. In this perspective of the field, we introduce the challenges and opportunities of NMR studies of membrane proteins, briefly surveying membrane‐mimicking systems and their application in structure determination. A case study then focuses on the C‐terminal domain of the bacterial potassium channel KcsA, describing how improvements in membrane‐mimicking conditions eventually enabled us to present a structural view of the pH‐dependent behavior of this cytoplasmic channel domain. The results highlight prerequisites for a successful study of MPs and the potential for future investigations.  相似文献   

6.
We used infrared (IR) microscopy to monitor in real-time the metabolic turnover of individual mammalian cells in morphologically different states. By relying on the intrinsic absorption of mid-IR light by molecular components, we could discriminate the metabolism of adherent cells as compared to suspended cells. We identified major biochemical differences between the two cellular states, whereby only adherent cells appeared to rely heavily on glycolytic turnover and lactic fermentation. We also report spectroscopic variations that appear as spectral oscillations in the IR domain, observed only when using synchrotron infrared radiation. We propose that this effect could be used as a reporter of the cellular conditions. Our results are instrumental in establishing IR microscopy as a label-free method for real-time metabolic studies of individual cells in different morphological states, and in more complex cellular ensembles.  相似文献   

7.
We describe an adjustable membrane-tethered/soluble protein screening methodology termed ECSTASY (enzyme cleavable surface tethered all-purpose screening system) which combines the power of high-throughput fluorescence-activated cell sorting of membrane-tethered proteins with the flexibility of soluble assays for isolation of improved mammalian recombinant proteins. In this approach, retroviral transduction is employed to stably tether a library of protein variants on the surface of mammalian cells via a glycosyl phosphatidylinositol anchor. High-throughput fluorescence-activated cell sorting is used to array cells expressing properly folded and/or active protein variants on their surface into microtiter culture plates. After culture to expand individual clones, treatment of cells with phosphatidylinositol-phospholipase C releases soluble protein variants for multiplex measurement of protein concentration, activity and/or function. We utilized ECSTASY to rapidly generate human β-glucuronidase variants for cancer therapy by antibody-directed enzyme prodrug therapy with up to 30-fold greater potency to catalyze the hydrolysis of the clinically relevant camptothecin anti-cancer prodrug as compared with wild-type human β-glucuronidase. A variety of recombinant proteins could be adjustably displayed on fibroblasts, suggesting that ECSTASY represents a general, simple and versatile methodology for high-throughput screening to accelerate sequence activity-based evolution of mammalian proteins.  相似文献   

8.
Low molecular weight heparin (LMWH)/protamine (P) nano/micro particles (N/MPs) (LMWH/P N/MPs) were applied as carriers for heparin-binding growth factors (GFs) and for adhesive cells including adipose-derived stromal cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs). A mixture of LMWH and P yields a dispersion of N/MPs (100 nm–3 μm in diameter). LMWH/P N/MPs can be immobilized onto cell surfaces or extracellular matrix, control the release, activate GFs and protect various GFs. Furthermore, LMWH/P N/MPs can also bind to adhesive cell surfaces, inducing cells and LMWH/P N/MPs-aggregate formation. Those aggregates substantially promoted cellular viability, and induced vascularization and fibrous tissue formation in vivo. The LMWH/P N/MPs, in combination with ADSCs or BMSCs, are effective cell-carriers and are potential promising novel therapeutic agents for inducing vascularization and fibrous tissue formation in ischemic disease by transplantation of the ADSCs and LMWH/P N/MPs-aggregates. LMWH/P N/MPs can also bind to tissue culture plates and adsorb exogenous GFs or GFs from those cells. The LMWH/P N/MPs-coated matrix in the presence of GFs may provide novel biomaterials that can control cellular activity such as growth and differentiation. Furthermore, three-dimensional (3D) cultures of cells including ADSCs and BMSCs using plasma-medium gel with LMWH/P N/MPs exhibited efficient cell proliferation. Thus, LMWH/P N/MPs are an adequate carrier both for GFs and for stromal cells such as ADSCs and BMSCs, and are a functional coating matrix for their cultures.  相似文献   

9.
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as dengue, yellow fever, and malaria, which can result in a misleading clinical diagnosis. The characterization of host–pathogen interactions is important in the development of new vaccines, treatments, and diagnostics. However, the pathogenesis of leptospirosis is not well understood, and many gaps remain to be addressed. Here, we aimed to determine if Leptospira strains, virulent, culture-attenuated, and saprophytic, and the major outer membrane proteins OmpL37, OmpL1, LipL21, LipL41, and LipL46 are able to adhere to different endothelial, epithelial and fibroblast cell lines in vitro. We showed that virulent leptospires robustly bind to all cells compared to the culture-attenuated and saprophytic lines. The recombinant proteins exhibited certain adhesion, but only OmpL1 and LipL41 were able to bind to several cell lines, either in monolayer or in cell suspension. Blocking OmpL1 with polyclonal antibodies caused a decrease in bacterial binding to cells, contrasting with an increase observed when anti-LipL41 antibodies were used. The adhesion of OmpL1 to HMEC-1 and EA.hy926 was inhibited when cells were pre-incubated with collagen IV, suggesting that both compete for the same cell receptor. We present here for the first time the interaction of five leptospiral outer membrane proteins with several cell lines, and we conclude that LipL41 and OmpL1 may have an impact on leptospiral adhesion to mammalian cells and may mediate the colonization process in leptospiral pathogenesis.  相似文献   

10.
Fusion proteins of human O(6)-alkylguanine-DNA alkyltransferase (AGT) can be specifically labeled with a wide variety of synthetic probes in mammalian cells; this makes them an attractive tool for studying protein function. However, to avoid undesired labeling of endogenous wild-type AGT (wtAGT), the specific labeling of AGT fusion proteins has been restricted to AGT-deficient mammalian cell lines. We present here the synthesis of an inhibitor of wtAGT and the generation of AGT mutants that are resistant to this inhibitor. This enabled the inactivation of wtAGT and specific labeling of fusion proteins of the AGT mutant in vitro and in living cells. The ability to specifically label AGT fusion proteins in the presence of endogenous AGT, after brief incubation of the cells with a small-molecule inhibitor, should significantly broaden the scope of application of AGT fusion proteins for studying protein function in living cells.  相似文献   

11.
We report that hydrophilic oxidized multiwalled carbon nanotube papers (CNPs) were efficient substrates for attachment, spreading, and proliferation of MG-63 cells. Complete spreading occurred in the first 4 h of culture even without complete serum or pre-adsorbed adhesion proteins such as collagen or fibronectin. By contrast, the density of adherent cell on hydrophobic CNPs was low. Spreading did not happen after 24 h of culture in absence of serum proteins and growth factors on such papers. Cell viability concomitantly decreased. We also observed that a short RGD peptide, designed to adsorb on both hydrophobic and hydrophilic CNPs, enhanced adhesion, spreading, and proliferation only on hydrophilic CNPs. By contrast, adsorbed fibronectin triggers cell adhesion and spreading on both types of CNPs. Our results show that the imitation of tissue basal membranes with the nanofibrous structure of CNPs is insufficient to trigger the proliferation and spread of cells. Chemical cues are also needed for cells to spread. CNPs, however, offer a better substrate for adhesion protein absorption than do non-porous polymers.  相似文献   

12.
A number of proteins with potential therapeutic uses (monoclonal antibodies, interferons, plasminogen activators) have been produced in mammalian cells. Novel bioreactor designs used to generate high density cultures mostly employ methods which approximate in vivo homeostasis. These perfusion and dialysis culture systems maintain the concentration of medium components and growth factors at a relatively high level while minimizing the accumulation of growth inhibitory metabolites. These methods include microcarrier culture, microencapsulation and other forms of entrapment, perfusion suspension culture in continuous stirred tank reactors, hollow fibres and combinations thereof. A summary of the status of industrial mammalian cell culture will be presented with examples illustrating the processes above.  相似文献   

13.
目的优化乙型流感病毒在无血清悬浮培养MDCK细胞上的增殖条件。方法以乙型流感病毒感染无血清悬浮培养的MDCK细胞,对培养条件中的MOI(10-1、10-2、10-3、10-4、10-5、10-6、10-7)、胰酶终浓度(2. 5、5、7. 5、10、15、20μg/mL)、细胞接毒密度(50×104、100×104、300×104、500×104、700×104个/mL)及病毒收获时间(24、48、72、96、120 h)进行优化。同时对流感病毒在贴壁培养及无血清悬浮培养MDCK细胞上的增殖情况进行比较。结果乙型流感病毒在无血清悬浮培养MDCK细胞上最适增殖条件为:MOI为10-2、胰酶终浓度为10μg/m L、细胞接毒密度为300×104个/mL、病毒收获时间为72 h。流感病毒在...  相似文献   

14.
Bacterial contamination of surfaces is a natural and spontaneous process that often results in the formation of biofilms. The extracellular matrix of biofilm is mostly composed of proteins, polysaccharides, and extracellular DNA and is responsible for the strong persistent ability of biofilm in the food industry. Despite cleaning and disinfection processes, persistent bacteria cause a major problem in food processing environments. Synthetic surfactants, mainly anionic surface-active agent, are commonly used as detergents, foaming agents, wetting agents, emulsifiers, and dispersants. Their tendency to adsorb to surfaces and interfaces and modify their surface tension, is considered among their main properties. They also have the ability to attach to bioactive macromolecules such as proteins, peptides, and DNA causing cell membrane damage. In order to estimate the adhesion kinetic and proliferation of pathogenic bacteria Staphylococcus aureus, the surface of glass was coated with anionic surfactant Sodium Lauryl Sulfate (SLS). Moreover, SLS was added in suspension with the culture medium. The physicochemical properties of the material were calculated using the contact angle measurement method and bacterial hydrophobicity using the microbial adhesion to hydrocarbons (MATH) test. The obtained results showed that the number of adhering cells increased gradually as a function of time. However, changing the surface properties of the glass and S. aureus has affected the rate of adherent cells with time as well as their organization. SLS inhibited the attachment of cells, whether it is added with the microbial suspension or at the surface of the support. Generally, the present article points to a relationship between the microbial adhesion, the surface chemistry of the solid material and the bacteria, and the suspension properties.  相似文献   

15.
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.  相似文献   

16.
Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectin-like receptor NKG2D. To redirect NK cells against tumor cells, we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the 'knob into hole' heterodimerization strategy, in which 'knob' and 'hole' variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site.  相似文献   

17.
The Chinese Hamster Ovary (CHO K1) cell was used to express a targeted anti-cancer monoclonal antibody by optimizing the platform of the construction of production cell line in this study. The adherent CHO K1 was first adapted to suspension culture in chemical defined medium. Then the glutamine synthetase (GS) vector was applied to construct a single plasmid to overexpress a monoclonal antibody IgG1. Post transfection, the production of cell pool was optimized by glutamine-free selection and amplification using various concentrations of methionine sulfoximine. The best cell pool of CHO K1/IgG1 was used to screen the top single clone using the limiting dilution cloning. Finally, a high IgG1 production of 780 mg/L was obtained from a batch culture. This study demonstrated that the construction of high producing cell line, from gene to clone, could be completed within six month and the gene amplification improved protein production greatly.  相似文献   

18.
Ticks, lice, flees, mosquitos, leeches and vampire bats need to prevent the host’s blood coagulation during their feeding process. This is primarily achieved by injecting potent anticoagulant proteins. Basophils frequently accumulate at the site of tick feeding. However, this occurs only after the second encounter with the parasite involving an adaptive immune response and IgE. To study the potential role of basophils and mast cells in the defense against ticks and other ectoparasites, we produced anticoagulant proteins from three blood-feeding animals; tick, mosquito, and leech. We tested these anticoagulant proteins for their sensitivity to inactivation by a panel of hematopoietic serine proteases. The majority of the connective tissue mast cell proteases tested, originating from humans, dogs, rats, hamsters, and opossums, efficiently cleaved these anticoagulant proteins. Interestingly, the mucosal mast cell proteases that contain closely similar cleavage specificity, had little effect on these anticoagulant proteins. Ticks have been shown to produce serpins, serine protease inhibitors, upon a blood meal that efficiently inhibit the human mast cell chymase and cathepsin G, indicating that ticks have developed a strategy to inactivate these proteases. We show here that one of these tick serpins (IRS-2) shows broad activity against the majority of the mast cell chymotryptic enzymes and the neutrophil proteases from human to opossum. However, it had no effect on the mast cell tryptases or the basophil specific protease mMCP-8. The production of anticoagulants, proteases and anti-proteases by the parasite and the host presents a fascinating example of an arms race between the blood-feeding animals and the mammalian immune system with an apparent and potent role of the connective tissue mast cell chymases in the host defense.  相似文献   

19.
The market for protein-drugs has steadily increased due their increased use as alternatives to traditional small molecule drugs. While some therapeutic proteins have been produced in microbial systems, mammalian cell systems such as Chinese hamster ovary (CHO) cells are widely used as the host cell system. To increase the efficiency of producing therapeutic proteins, many researchers have attempted to solve the critical problems that occur in mammalian cell systems. As a result, several serum-free media and advanced culture methods have been developed, and protein productivity has increased considerably through the development of efficient selection methods. However, the prevalence of apoptosis during mammalian cell culture still remains a significant problem. Based on the understanding of apoptotic mechanisms and related proteins, anti-apoptotic engineering has steadily progressed. In this study, we review the strategies that have been developed for high-level production of recombinant proteins in the CHO cell system via a selection of clones, target-gene amplification, optimization of culture systems and an inhibition of apoptosis through genetic modification.  相似文献   

20.
We previously developed chicken interleukin-1β (IL-1β) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1β (pIL-1β) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1β, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1β. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1β for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1β may be used as an adjuvant for the formulation of pig vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号