首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blend polyethersulfone (PES)/cellulose acetate (CA) flat‐sheet microporous membranes were prepared by reverse thermally induced phase separation (RTIPS) process. The effects of CA content and coagulation bath temperature on membrane structures and properties were investigated in terms of membrane morphology, water contact angle, permeation performance, and mechanical properties. The cloud point results indicated that the cloud point decreased with the increasing content of CA. When the coagulation bath temperature was lower than the cloud point, the membrane formation process underwent nonsolvent induced phase separation (NIPS) process and dense skin layer and finger‐like structure were formed in membranes. These membranes had lower pure water flux and poor mechanical properties. But when the coagulation bath temperature was higher than the cloud point, the membrane formation process underwent RTIPS process. The porous top surface as well as porous cross‐section of the membranes were formed. Therefore, high pure water flux and good mechanical properties were obtained. The contact angles results indicated that the hydrophilicity of the prepared membranes improved obviously with the addition of CA. When the content of CA was 0.5 wt% and the membrane formation temperature was 323K, the PES/CA microporous membrane which was prepared via the RTIPS process displayed a optimal permeability of the pure water flux of 816 L m?2 h?1 and the BSA rejection rate of 49.5%, which showed an increase of 48.9% and 23.6% than that of pure PES membrane, respectively. Moreover, the mechanical strengths of the membranes obtained by RTIPS process were better than those membranes prepared by NIPS process. POLYM. ENG. SCI., 58:180–191, 2018. © 2017 Society of Plastics Engineers  相似文献   

2.
Low‐temperature helium plasma treatment followed by grafting of N‐vinyl‐2‐pyrrolidone (NVP) onto poly(ether sulfone) (PES) ultrafiltration (UF) membranes was used to modify commercial PES membranes. Helium plasma treatment alone and post‐NVP grafting substantially increased the surface hydrophilicity compared with the unmodified virgin PES membranes. The degree of modification was adjusted by plasma treatment time and polymerization conditions (temperature, NVP concentration, and graft density). The NVP‐grafted PES surfaces were characterized by Fourier transform infrared attenuated total reflection spectroscopy and electron spectroscopy for chemical analysis. Plasma treatment roughened the membrane as measured by atomic‐force microscopy. Also, using a filtration protocol to simulate protein fouling and cleaning potential, the surface modified membranes were notably less susceptible to BSA fouling than the virgin PES membrane or a commercial low‐protein binding PES membrane. In addition, the modified membranes were easier to clean and required little caustic to recover permeation flux. The absolute and relative permeation flux values were quite similar for the plasma‐treated and NVP‐grafted membranes and notably higher than the virgin membrane. The main difference being the expected long‐term instability of the plasma treated as compared with the NVP‐grafted membranes. These results provide a foundation for using low‐temperature plasma‐induced grafting on PES with a variety of other molecules, including other hydrophilic monomers besides NVP, charged or hydrophobic molecules, binding domains, and biologically active molecules such as enzymes and ribozymes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1699–1711, 1999  相似文献   

3.
Surface modification of microporous polypropylene (PP) membrane was performed by graft polymerization of acrylic acid using physisorbed initiators method. The factors effecting on the grafting degree such as monomer concentration, reaction temperature and initiator density were determined. The morphological and microstructure changes of the membrane were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The pure water contact angle, protein adsorbed amount, water flux, and antifouling property of the grafted membrane were investigated. The results indicated that the pore size and porosity of the grafted membrane were reduced and the static contact angle of pure water on the grafted membrane decreased from 108° to 40° with the increase of grafting degree. The amount of protein adsorbed on the grafted membrane decreased about 30% compared to the virgin polypropylene membrane when the grafting degree was 18.71%. Though the water flux reduced, the flux recovery of the grafted membrane increased 82.66% with the grafting degree 16.0%. The hydrophilic and antifouling property of the grafted membrane also were improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
张平允  李康康  徐超  郎万中 《净水技术》2021,40(1):37-43,87
以PES/DMAc/DEG低临界共溶温度(LCST)体系为铸膜液,利用低临界共溶温度(LCST)的热致相分离(LCST-TIPS,简称RTIPS)法制备PES微孔膜.探究影响PES微孔膜理化性能及其结构的2个主要因素:凝胶浴温度、非溶剂(DEG)/溶剂(DMAc)的质量比.运用扫描电镜(SEM)﹑纯水通量﹑BSA截留率...  相似文献   

5.
Sulfonated poly(amide‐imide) (SPAI) copolymer was synthesized, characterized, and blended into poly(ether sulfone) (PES)/dimethylacetamide casting solutions to prepare ultrafiltration membranes. Different weight ratios of the copolymer (0–10 wt %) were mixed in the PES casting solution. The analyses of contact angle and attenuated total reflection‐Fourier transform infrared spectra were used to study hydrophilicity and physicochemical properties of the membrane surface, respectively. The membranes were further characterized by scanning electron microscopy images, ultrafiltration performance, and fouling analyses. The outcomes showed that addition of the SPAI in the PES matrix improved considerably the membranes hydrophilicity. Moreover, with increasing SPAI concentration, the porosity, flux recovery ratio, and pure water permeability of the modified membranes were improved. The pure water flux was increased from 3.6 to 12.4 kg/m2 h by increasing 2 wt % SPAI. The antifouling property of the modified PES membranes against bovine serum albumin, tested by a dead‐end filtration setup revealed that bovine serum albumin rejection of the obtained membrane was also enhanced and the antifouling properties of the blending membranes were improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46477.  相似文献   

6.
Ultrafine electrospun polymer fibers, with their large specific surface areas, have not found wide applications partly because the fiber surfaces usually carry an insufficient quantity of active groups. The electrospinning and surface‐grafting copolymerization of polystyrene fibrous membranes were carried out via the embedded radical initiator approach. The results from X‐ray photoelectron spectroscopy show that the initiator added to the polystyrene dope was deliberately expelled onto the fiber surfaces. The microstructure and hydrophilicity of the grafted membranes were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle and water uptake capacity measurements. An increase in the initiator dosages led to decreases in the grafting rate, water uptake, and hydrophilicity of the grafted membranes; the opposite was true for increases in the neutralization of acrylic acid (AA). However, the grafting, water uptake, and hydrophilicity of the grafted membranes presented nonlinear relationships with the concentration of AA. The initiator emigration technique will provide a facile and feasible platform for the surface‐grafting modification of electrospun membranes. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
To improve the antifouling characteristics, polypropylene microporous membranes (PPHFMMs) were surface‐modified by the sequential photoinduced graft polymerization of acrylic acid and acrylamide. The grafting density and the grafting chain length, which played important roles in the antifouling characteristics, were controlled in the first and the second step, respectively. The ATR/FTIR results clearly indicated the successful modification on the membrane surface. The static water contact angle of the modified membrane reduced obviously with the increase of the grafting chain length. The contact angle of the acrylic acid modified membranes was lower than that of the acrylamide modified membrane with similar grafting chain length. The grafting chain length increased with the increase of UV irradiation time and monomer concentration. The grafting chain length of poly(acrylic acid) (PAAc) was lower than that of the polyacrylamide (PAAm) under the same polymerization conditions. Pure water flux for the modified membranes increased with the increase of grafting chain length, and had maximums. The antifouling characteristics of the modified membranes in a submerged membrane‐bioreactor (SMBR) were evaluated. The modified membranes showed better filtration performances in the SMBR than the unmodified membrane, and the acrylic acid grafted membrane presented better antifouling characteristics than acrylamide modified membranes. The results demonstrated that the surface carboxyl‐containing membranes were better than the surface amido‐containing membranes. The results of Pearson correlations demonstrated that the PAAc modified membranes with longer grafting chain length had higher flux recoveries, while the PAAm modified membranes with longer grafting chain length had lower flux recoveries. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Surface functionalization and modification including the grafting process are effective approaches to improve and enhance the reverse osmosis (RO) membrane performance. This work is aimed to synthesize grafted/crosslinked cellulose acetate (CA)/cellulose triacetate (CTA) blend RO membranes using N-isopropylacrylamide (N-IPAAm) as a monomer and N,N-methylene bisacrylamide (MBAAm) as a crosslinker. The morphology of these membranes was analyzed by scanning electron microscopy and their surface roughness was characterized by atomic force microscopy. The performance of these membranes was evaluated through measuring two major parameters of salt rejection and water flux using RO unit at variable operating pressures. It was noted that the surface average roughness obviously decreased from 148 nm for the pure CA/CTA blend membrane with 2.5% CTA to 110 nm and 87 nm for the grafted N-IPAAm and grafted/crosslinked N-IPAAM/MBAAm/CA/CTA-RO membranes, respectively. Moreover, the contact angle decreased from 51.98° to 47.6° and 43.8° after the grafting and crosslinking process. The salt rejection of the grafted CA/CTA-RO membrane by 0.1% N-IPAAm produced the highest value of 98.12% and the water flux was 3.29 L/m2h at 10 bar.  相似文献   

9.
为了调控聚偏氟乙烯(PVDF)膜的孔状结构和性能,以EAA(聚乙烯丙烯酸)作为添加剂,以PEG400作为致孔剂,通过浸入沉淀相转换法制备了一系列PVDF/EAA复合超滤膜,通过扫描电镜、红外、水接触角、黏度表征、孔隙率、纯水通量、牛血清蛋白(BSA)截留率、通量恢复率和污染率等测试手段,研究了不同的EAA含量和不同的致孔剂PEG400含量对复合膜性能的影响。结果表明,EAA的添加改善了膜表面的亲水性,致孔剂PEG400的加入提高了铸膜液和凝固浴之间的亲和性,加快了成膜速度,从而在膜表面形成更多的孔洞,其中E-3膜的纯水通量和BSA截留率分别达到了271.57 L.m?2.h?164.83%,相对于纯PVDF膜分别提高了约486.29%和116.10%;通量恢复率和总污染率分别为75.97%和46.51%,相对于纯PVDF膜分别提升了19.37%和降低了26.92%。而P-3膜的孔隙率为53.33%,平均孔径为4.55 nm,相对于未加致孔剂的P-0膜的孔隙率和平均孔径分别提高了约33.33%和88.02%;因此,本研究中提到EAA作为添加剂,及 PEG400作为致孔剂的方法可以显著改善PVDF膜结构和渗透性能。  相似文献   

10.
In this study, maleic anhydride grafted polypropylene microporous flat‐sheet membranes were prepared via a thermally induced phase separation method with a mixture of dibutyl phthalate and dioctyl phthalate as a diluent. The effects of the polymer composition and coagulation bath temperature on the morphology and performance of the fabricated membranes were investigated. The hydrophilicity results of the membranes demonstrated that membrane modification reduced the water contact angle by about 45°, whereas the pure water flux was enhanced about four times. The antifouling behavior of the fabricated membranes was also investigated in a membrane bioreactor. The results show that the pure water flux, membrane pore size, and porosity decreased, whereas the antifouling performance was improved with increasing polymer concentration and decreasing bath temperature. Finally, the results reveal that the removal efficiency of contaminates was independent on the membrane characterization and was done exclusively through biological removal. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43857.  相似文献   

11.
Surface modification of polyethersulfone (PES) membrane surfaces using UV/ozone pretreatment with subsequent grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. The surface modifications were evaluated in terms of hydrophilicity, chemical composition of the surface and static protein adsorption. In both methods, poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG) and chitosan were chosen as hydrophilic polymers to chemically modify the commercial virgin PES membrane to render it more hydrophilic as these materials have excellent hydrophilic property. Modified PES membranes were characterized by contact angle and XPS. Contact angles of modified PES membranes were reduced by 19 to 58% of that of the virgin PES membrane. PES membrane modified with PEG shows higher wettability than other hydrophilic materials with the highest contact angle reduction shown for UV/ozone pretreated, PEG grafted PES membrane surface. In general, XPS spectra supported that the PES membranes were successfully modified by both grafting with UV/ozone pretreatment and interfacial polymerization methods. The results of the static protein adsorption experiments showed all surface modifications led to reduction in protein adsorption on PES membranes; the highest protein adsorption reduction occurred with membrane modified by UV/ozone pretreatment followed by PES grafting, which corresponded to the highest contact angle reduction. However, there seems to be no clear correlation between contact angle reduction and reduction in protein adsorption in the case that involved chitosan. Nevertheless, membranes modified with chitosan do show higher reduction in protein adsorption than membranes modified with other materials under the same conditions.  相似文献   

12.
ET‐g‐PAAc membranes were obtained by radiation grafting of acrylic acid onto poly(tetrafluoroethylene–ethylene) copolymer films using a mutual technique. The ion selectivity of the grafted membranes was determined toward K+, Ag+, Hg2+, Co2+, and Cu2+ in a mixed aqueous solution. The ion‐exchange capacity of the grafted membranes was measured by back titration and atomic absorption spectroscopy. The Hg2+ ion content of the membrane was more than that of either the K+ or Ag+ ions. The presence of metal ions in the membranes was studied by infrared and energy‐dispersive spectroscopy measurements. Scanning electron microscopy of the grafted and metal‐treated grafted membranes showed modification of the morphology of the surface due to the adsorption of K+ and Ag+ ions. No change was observed for the surface of the membrane that was treated with Hg2+ ions. The thermal stability of different membranes was improved more with Ag+ and Hg2+ ions than with K+ ions. It was found that the modified grafted membranes possessed good hydrophilicity, which may make them promising candidates for practical applications, such as for cation‐exchange membranes in the recovery of metals from an aqueous solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2692–2698, 2002  相似文献   

13.
In this study, polypropylene composite hollow fiber membrane with an acrylic hydrogel layer was fabricated successfully by in situ ultrasonic wave-assisted polymerization. The ultrasonic irradiation can significantly improve the grafting efficiency of acrylic acid on the membrane surface. The modified membranes were characterized on the basis of physicochemical characteristics, permeation performance and antifouling property. The results revealed that the pure water flux of modified membranes was significantly increased when the graft density was lower than 0.82 mg cm−2, due to the improvement of hydrophilicity. Interestingly, the optimized membrane PPM1.49 could efficiently remove organic dyes from aqueous solution, showing retentions of 99.5 and 98.7% to Congo red and methylthionine chloride, respectively. Meanwhile, its flux recovery ratio was elevated from 68.0 to 92.0% using bovine serum albumin aqueous solution as a foulant compared with the pristine membrane. These promising results indicate that modified membranes developed in this study are potentially applicable for dye removal from wastewater. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47099.  相似文献   

14.
Fu Liu  Bao-Ku Zhu  You-Yi Xu 《Polymer》2007,48(10):2910-2918
Poly(vinylidene fluoride) (PVDF) membrane was pre-irradiated by electron beam, and then poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto the membrane surface in the aqueous solution. The degree of grafting was significantly influenced by the pH value of the reaction solution. The surface chemical changes were characterized by the Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Combining with the analysis of the nuclear magnetic resonance proton and carbon spectra (1H NMR and 13C NMR), PEGMA was mainly grafted onto the membrane surface. Morphological changes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The porosity and bulk mean pore size changes were determined by a mercury porosimeter. The surface and bulk hydrophilicity were evaluated on the basis of static water contact angle, dynamic water contact angle and the dynamic adsorption process. Furthermore, relative high permeation fluxes of pure water and protein solution were obtained. All these results demonstrate that both hydrophilicity and fouling resistance of the PVDF membrane can be improved by the immobilization of hydrophilic comb-like polymer brushes on the membrane surface.  相似文献   

15.
Polyethersulfone (PES) based ultrafiltration membranes were fabricated via phase inversion by adding silver-loaded sodium zirconium phosphate nanoparticles (nanoAgZ) in PES casting solutions. The effect of nanoAgZ concentration on the membrane performance, i.e., morphology, hydrophilicity, thermal stability, permeation and antifouling properties was investigated. The results of thermal gravitational analysis (TGA) showed that the thermal stability of the hybrid membrane had been improved by the addition of nanoAgZ particles. Contact angle results indicated that the hydrophilicity of the modified membranes was enhanced. The contact angle of the membrane decreased from 71.5° to 52.6° with the increase of the nanoparticle content in the casting solution. Permeation experiment results showed that the modified PES membranes demonstrate better separation performance over the pure PES membrane. The pure water flux of PES membrane increased from 82.1 L/m2 h to 100.6 L/m2 h with the addition of the nanoparticles. Most importantly, the incorporation of the nanoAgZ particles enhanced the BSA fouling resistance and also the anti-biofouling performance of the membrane.  相似文献   

16.
Hydrophilic modification is a promising method to inhibit fouling formation on ultrafiltration membrane.In this work,different mass concentrations (1%-16%) of hydrophilic polyvinylpyrrolidone were incorpo-rated into polyethersulfone (PES) membranes fabricated by none-solvent induced phase separation.Then,polydopamine (PDA) coating on the surface of prepared membrane was carried out at pH 8.5.The mor-phology and structure,surface hydrophilicity,permeation flux,BSA rejection,antifouling and stability performances of PES and PDA/PES modified membranes were investigated in detail.The results indicated that PDA was successfully attached onto the membranes.Membrane hydrophilicity was evaluated by water contact angle measurement.The contact angles of modified membranes reduced remarkably,sug-gesting that the membrane hydrophilicities were significantly increased.The results of filtration tests,which were done by dead-end filtration of bovine serum albumin solution,showed that the properties of permeability and fouling resistance were obviously improved by PDA modification.When polyvinylpyrrolidone mass content reached 10%,flux recovery ratio of modified membrane was up to 91.23%,and its BSA rejection were over 70%.The results of stability tests showed that the modified mem-branes had good mechanical stability and chemical stability.This facile fabrication procedure and out-standing performances suggested that the modified membranes had a potential in treating fouling.  相似文献   

17.
Polyimide (PI) membranes were prepared via non-solvent induced phase separation. The prepared PI membranes were modified by ultraviolet light (UV) and graft polymerization of hydrophilic acrylic and amino monomers in the absence and presence of benzophenone (BP) onto the membrane surface to introduce more hydrophilic and lower fouling membranes. Acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as acrylic monomers, 1,3-phenylenediamine (mPDA) as amino monomer and BP as photo-initiator were used. The unmodified and modified PI membranes were characterized by degree of grafting (DG) and contact angle measurements. They were also characterized by their ultrafiltration performance with pure water and non-skim milk and nanofiltration performance with 500 ppm NaCl and MgSO4 single solutions. The DG was increased with increasing monomer concentration, especially at presence of BP. The contact angle measurements indicated that hydrophilicity of PI membrane was improved after UV photografting of hydrophilic monomers onto the membrane surface in all cases. The ultrafiltration results showed that the pure water fluxes and milk water permeation of PI membrane declined after monomer photo-grafting while the protein rejection was extremely increased. The decrease in permeability was remarkable in the presence of BP. The mean pore size of base and modified PI membranes ranged from 8.3 to 0.55 nm when calculated from the solute transport data. Moreover, the irreversible flux loss and flux recovery of PI membrane were modified by UV photo-grafting of hydrophilic monomers. All modified membranes showed considerable NaCl and MgSO4 rejections. In addition, the membrane modified with mPDA at presence of BP showed highest NaCl and MgSO4 rejections.  相似文献   

18.
《分离科学与技术》2012,47(16):4099-4112
A 0.22 µm polyethersulfone microfiltration membrane was modified using acrylic acid irradiated with UV light. The degree of grafting (DG) was confirmed by FTIR spectroscopy, which varied from 21 to 568 µg/cm2 for differing irradiation times and initial monomer concentrations. The contact angle of the modified membranes was at least 10° less than the unmodified PES membrane. Modification filled the pores with copolymer, and decreased the permeability of the membrane. However, following the filtration of E. coli, and membrane cleaning, the flux recovery was 100% for the modified membranes and only 50% for the unmodified membranes. Thus, the modification helped in showing reversible biofouling and higher flux recovery.  相似文献   

19.
Layered membranes were prepared by sequential grafting—by means of redox initiators—of water‐soluble monomers, with oppositely charged ionic groups, onto ultrafiltration (UF) polyacrylonitrile (PAN) membranes at room temperature. Grafting of a single layer of 2‐hydroxyethylmethacrylate (HEMA) onto a PAN membrane gave a highly grafted membrane with a relatively high water flux. Bilayered membranes with various properties containing poly‐2‐(dimethylamino)ethyl methacrylate (p‐2DMAEMA) as the bottom layer and polymethacrylic acid or polystyrenesulfonic acid (p‐SSA) as the upper layer were prepared and compared—by means of infrared spectroscopy and electron microscopy—with single‐layered membranes of grafted polyhydroxyethylmethacrylate. Layered membranes exhibited a significant decline in water flux in comparison with the initial UF membranes. The flux could, however, be manipulated by controlling the concentration of monomers, the time of grafting, and the number of layers. When four layers of p‐2DMAEMA and p‐SSA were sequentially grafted onto a PAN membrane, pure water fluxes were stable over a wide range of pH values and did not change over long storage times. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 509–520, 2005  相似文献   

20.
In order to reduce surface aggregation and enhance the performance of PES membranes, a hydrophilic PES/TEOS HF membrane was developed for the treatment of wastewater containing oil. PES/TEOS was prepared via a sol-gel self assembly and dry–wet spinning method. Silicon dioxide sol was prepared from a mixture of tetraethoxysilane, ethanol, water, and acetic acid (acting as the catalyst). HF hybrid membranes were produced from dope solutions containing polyethersulfone, polyethylene glycol, silicon sol, and NMP. The membranes were characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), porosity, fourier transform infrared spectroscopy (FTIR), and contact angle measurements. The composite membranes were successfully used to treat wastewater containing oil and their separation performance were evaluated. The PES/TEOS-2 membrane displayed the best performance, with a permeate flux of 90.937 L/m2 h and an oil retention of 99.98%. In addition, this membrane showed a higher pure water flux of 102.43 L/m2 h as compared to PES-0 and PES/SiO2–1 membranes (87.347 L/m2 h and 91.949 L/m2 h, respectively). The PES/TEOS-2 membrane also presented enhanced antifouling behavior with a FRR and a RFR of 93.33% and 11.22%, respectively. In addition, this membrane displayed excellent long-term recycling properties, making it a desirable candidate for oily wastewater separation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号