首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core-shell-structured polyvinyl alcohol (PVA)-poly (lactic acid) (PLA) nanofibers combining the hydrophilic trait of PVA and the biocompatibility of PLA were produced using coaxial electrospinning. This allowed the incorporation of AgNO3 in the PVA core of the distinct fibers as shown through transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) showed relatively uniform and bead-free fibers with smooth surfaces. Ag-containing fibers show significantly decreased diameters compared with Ag-free samples as a result of the increased conductivity of the spinning solutions with increasing amounts of AgNO3. In a postsynthetic treatment, the AgNO3 was reduced forming silver nanoparticles (Ag NPs). Ag NPs of 45 to 90 nm size were located in the PVA core but also on the surface of the core-shell fibers and as individual, agglomerated, and polymer-coated particles of 100-200 nm. Powder X-ray diffraction (PXRD), energy dispersive X-ray spectroscopy (EDX), and UV-vis absorption spectroscopy confirmed the increasing amounts of Ag in the core-shell fibers when using increasing amounts of AgNO3 in the spinning solutions. The antibacterial activity of the nanofiber mats against two prokaryotes Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) increased with increasing amounts of Ag, as expected and produces inhibition zones of 1 to 2 mm.  相似文献   

2.
In this paper, poly(vinyl alcohol)/silver nitrate (PVA/AgNO3) films were annealed at 180 °C for 1 h to prepare highly electrically conductive poly(vinyl alcohol)/silver (PVA/Ag) nanohybrids. Ultraviolet (UV)-visible absorption spectra, X-ray diffraction (XRD) scans, and scanning electronic microscopy (SEM) were applied to investigate the structures and morphology of the PVA hybrids. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to study the thermal property of PVA/AgNO3 films. Furthermore, perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy combined with temperature-dependent Fourier transform infrared (FTIR) spectroscopy was used to investigate the conversion of AgNO3 into Ag nanoparticles in PVA matrix. The results show that the chelates for AgNO3 coordinated with hydroxyl groups are primarily decomposed in the temperature regions of 39.7–72.6 °C and 182.7–199.6 °C. AgNO3 is reduced into Ag0 and the hydroxyl groups of PVA are oxidized into carbonyl groups. The PVA-AgNO3 chelates are very rapidly decomposed in the temperature region of 182.7–199.6 °C. Large amounts of Ag0 produced by the reduction of AgNO3 are aggregated into Ag nanoparticles which are homogeneously dispersed into the PVA matrix. When the temperature increases to 212.7 °C, the unhydrolyzed acetate groups in PVA chains are sharply decomposed.  相似文献   

3.
Green chemical method could be a promising route to achieve large scale synthesis of nanostructures for biomedical applications. Here, we describe a green chemical synthesis of silver nanoparticles (Ag NPs) on chitosan‐based electrospun nanofibers using Eucalyptus leaf extract. A series of silver salt (AgNO3) amounts were added to a certain composition of chitosan/polyethylene oxide aqueous acetic acid solution. The solutions were then electrospun to obtain nanofibrous mats and then, morphology and size of nanofibers were analyzed by scanning electron microscopy (SEM). Incubation of AgNO3‐containing mats into Eucalyptus leaf extract led to the formation of Ag NP clusters with average diameter of 91 ± 24 nm, depicted by SEM and transmission electron microscopy. Surface enhanced Raman spectroscopy also confirmed formation of Ag NPs on the nanofibers. The mats also showed antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria with bigger inhibition zone for extract‐exposed mats against S. aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42133.  相似文献   

4.
A new method for production of nylon nanofibers with antibacterial properties containing silver nanoparticles (nylon nanofibers/Ag NPs) is introduced via in situ synthesis of nano-silver by reduction of silver nitrate in the polymer solution prior to electrospinning. The properties of the electrospinning solutions and the structures of the electrospun fibers were studied using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), UV?Cvis spectrophotometer and reflection spectrophotometer. Further, the antibacterial properties of the nanofibers were investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. Interestingly, an antibacterial properties has been found on nylon 6 nanofibers while the nylon nanofibers/Ag NPs showed excellent antibacterial activities against both tested bacteria. The produced nylon nanofibers/Ag NPs can be a good candidate for biomedical applications, water and air filtration.  相似文献   

5.
A metal chelate polymer (MCP) of PVAc‐AgNO3 was prepared by adding AgNO3 salts into the PVAc matrix and was coated on to PET substrate to form PVAc‐AgNO3/PET films. These films were then treated with NaBH4 aqueous solution to become the reduced metallized conductive films (RMCF) of PVAc‐AgNO3/PET. The electromagnetic interference shielding effectiveness (EMI/SE) and the characteristics of these films were investigated. The SE value was measured by the far‐field transmission line method. The surface resistivity (Rs) of RMCF with a AgNO3 content of 15 wt % was found to be below 5 Ω/sq, and the SE value exceeded 20 dB over the frequency range 50–900 MHz. The Rs of RMCF with a AgNO3 content of 30 wt % was less than 1 Ω/sq, and the SE value even reached 33 dB at 550–650 MHz. It was confirmed by X‐ray and scanning electronmicroscope (SEM) analysis that the conducting network, as formed by closely deposited silver atoms on the reduced coating surface, was the dominant pathway for effective electron propagation that contributed to the excellent conductivity of these RMCF (PVAc‐AgNO3/PET). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 270–273, 2004  相似文献   

6.
Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM).  相似文献   

7.
In this article, conductive and magnetic nanocomposites composed of polypyrrole (PPy), magnetite (Fe3O4) nanoparticles (NPs), silver (Ag) NPs, have been successfully synthesized with a two step process. First, the PPy/Fe3O4 was prepared by the ultrasonic in situ polymerization. Next, the PPy/Fe3O4/Ag was synthesized through the electrostatic adsorption. The products were characterized by fourier‐transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric (TG), conductivity and magnetization analysis, and the results showed that the Ag NPs with the good conductivity coated uniformly on the surface of PPy/Fe3O4 and improved the conductivity of PPy/Fe3O4/Ag composites. In addition, as compared with PPy/Fe3O4, PPy/Fe3O4/Ag composites also have the excellent electro‐magnetic property and enhanced thermostability. POLYM. COMPOS., 35:450–455, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Castor oil-based acid urethane macromers were prepared and employed for obtaining Ag/Au/polymer nanocomposites. Structure and UV induced photopolymerization of the macromers were investigated by spectral methods. The polymerization rate and the degree of conversion decreased with about 10% in the presence of 2.5 wt.% silver nanoparticles (Ag NPs). For the diacid macromer, the surface plasmon intensity increased with irradiation time (the optical density of the absorption maximum (430 nm) attained 2.3 after 600 s), whereas a diminished efficiency was found for Ag NPs in situ generated. Transmission electron microscopy and X-ray photoelectron spectroscopy confirmed uniform distribution of the spherical nanoparticles (0.6 nm (Ag NPs); 5 nm (Au NPs)) and the appearance of Ag 3d3/2, Ag 3d5/2, Au 4f7/2 and Au 4f5/2 peaks corresponding to Ag (0) or Au (0). Environmental scanning electron microscope with energy-dispersive X-ray detector, contact angle and mechanical parameters measurements complemented the above observations.  相似文献   

9.
Polyurushiol/silver (PU/Ag) composite conductive coatings were prepared from urushiol and AgNO3 under UV irradiation by using in situ radical reduction approach. The effects of the silver nitrate loading and the irradiation time on the surface resistivity of polyurushiol/silver (PU/Ag) composite films were investigated. The result from XRD analysis showed that the formation of Ag particles, and the surface resistivity of polyurushiol/silver (PU/Ag) composite films reached the value of 0.26 Ω cm, when the content of Ag particles in composite films was 23.8 wt%, and the irradiation time 90 s. Additionally, Ag particles were well dispersed in the composite films. And the films had good thermo-stability.  相似文献   

10.
A highly visible-light photocatalytic active Ag-modified TiO2 (Ag–TiO2) was prepared by a simple sol–gel process using TiOSO4 as the starting material, AgNO3 as a silver doping source, and hydrazine as a reducing agent. The prepared Ag–TiO2 samples were characterized by several techniques such as X-ray powder diffraction (XRD), BET surface area measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), energy dispersive X-ray spectrometry (EDX), X-ray absorption spectroscopy (XAS) and UV–vis diffuse reflectance spectroscopy (DRS). The Ag–TiO2 photocatalyst, a mixture of amorphous and anatase phases, has a high surface area. The silver contents in the Ag–TiO2 samples were determined by ICP measurements. The diffused reflectance UV–vis spectra indicated that the Ag–TiO2 samples exhibited higher red shifts compared with the undoped TiO2 sample. Indigo carmine degradation under visible irradiation indicated that the Ag–TiO2 catalyst gave higher photocatalytic efficiency than those of commercial P25-TiO2 and undoped-TiO2 samples. The Ag–TiO2 catalyst can be reused many times without any additional treatment.  相似文献   

11.
The behavior of a AgNO3/Ag2O/Ag “sandwich” upon heating in vacuum was studied by in situ X‐ray photoelectron spectroscopy (XPS) and ex situ scanning electron microscopy (SEM). The AgNO3/Ag2O/Ag “sandwich” was prepared by exposure of a silver foil to a NO : O2 mixture. The upper layer of the “sandwich” consists of AgNO3 crystals of a mean size between 0.1 and 0.4 μm. Heating at 550 K in vacuum results in melting of the AgNO3 crystals. A liquid film of AgNO3, readily wetting the silver, covers the surface. Cooling below the melting point of AgNO3 leads to the agglomeration of silver nitrate to long islands with a size reaching a few tens of micrometers (μm). The possible effects of AgNO3 liquid‐phase formation on surface processes are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A simple procedure is employed for the growth of silver nanoparticles (Ag NPs) onto the silicon substrate modified by poly(acrylic acid) (PAA) brushes, via: (1) surface-initiated ATRP of tert-butyl acrylate on Si surface to the preparation of poly(tert-butyl acrylate) brushes, (2) acid hydrolysis of PBA to the formation of PAA, and (3) in situ synthesis of Ag NPs via chemical reduction of AgNO3 in the presence of PAA brushes. The polymer brushes are thoroughly characterized. Moreover, Ag nanoparticles are homogeneously immobilized into the brush layer and have been used to fabricate a sensor platform of surface-enhance Raman scattering for the detection of organic molecules and effectively catalyze the reduction of methylene blue by NaBH4.  相似文献   

13.
Conducting polypyrrole silver (Ppy-AgNC) nanocomposite was synthesized by an interfacial polymerization method. Ag+ ions from the AgNO3 solution were taken in the formation of Ppy-AgNC. The incorporated silver was confirmed by X-ray diffraction (XRD). During the polymerization in a nitrate ion-containing solution, the impregnation leads to the formation of metallic silver. The size distribution of Ag into the polymer is confirmed by transmission electron microscopy (TEM), and proves the formation of a uniform species with spherical particles of Ag (mean diameter of 8-12 nm) branching at the border of Ppy. The thermal behavior of the material was studied by thermogravimetric measurements.  相似文献   

14.
The introduction of highly electrically conductive fillers (Ag microsheets and silver plating carbon fiber) can functionally improve the electrical conductivity of acrylate resin. In this study, Ag microsheets and Ag/CF were thus introduced into acrylate polymer via solution blending method under ultrasonication in order to improve the electrical conductivity of the acrylate resin. The properties and microstructures of Ag microsheets, CF, Ag/CF and ECAs were performed by scan electron microscope (SEM), X-ray diffraction analysis (XRD), etc. SEM images and XRD results illustrated that the impurities in carbon fiber could be completely removed after the adequately alkali treatment. The SEM images showed that large numbers of metallic silver particles were uniformly and densely coated on the surface of the carbon fibers and hybrid fillers (silver microsheets and Ag/CF) could homogeneously disperse in acrylate resin. Electrical conductivity measurements demonstrated that the electrical conductivity of ECAs increased with the increasing content of hybrid fillers and the percolation threshold of ECAs was 5 wt%. The electrical conductivity of ECAs at its percolation threshold was 15.79 S/cm, which was two orders of magnitude higher than that of the ECAs based on acrylate resin filled with silver microsheets. The increment in Ag/CF contents may decrease 180° peel strength and raise shear strength with low content of Ag/CF. The overall performance of ECAs was optimum with 2 wt% Ag/CF. The TGA analysis indicated that ECAs possess excellent thermal stability.  相似文献   

15.
The silver nanoparticles are gaining extensive attention due to their tremendous applications in conductive field. In this article, we reported a green method of preparing silver nanoparticles (AgNPs) with bagasse pulp extract acting as reducing agents. In this article, ultrasonic extraction method was adopted. This extraction method has the advantages of simple operation and less impurity content in the extract. Silver nitrate (AgNO3) solution, bagasse extract, and polyvinyl pyrrolidone (PVP) were used as the silver precursor, reducing agent, and protection agent, respectively. Next, hyperbranched polyurethane acrylate (HPUA) as waterborne resin was mixed with AgNPs to prepare UV‐curable conductive ink. The UV‐curable conductive ink synthesized by the AgNPs showed high conductivity, and the obtained conductive ink had very low resistance (1.06 Ω) and resistivity (2.6 × 10?5 Ω·m), good electronic stability, showing the great advantage in the field of UV‐curable conductive ink. In addition, we tested the AgNPs conductive ink of tearing resistance, rubbing fastness, and bending strength. The results showed the nanosilver conductive ink had good mechanical properties. J. VINYL ADDIT. TECHNOL., 26:90–96, 2020. © 2019 Society of Plastics Engineers  相似文献   

16.
There is an extensive possibility of improving characteristics of fibers used in hard tissue engineering, being hydrophobic and less osteoconductive, resulting in the dynamic growth of new tissues. The current work focuses on the fabrication of nanofibers incorporated with titanium dioxide (TiO2) ''as osteoconductive'' and silver (Ag) ''as self-healing'' nanoparticles (NPs). The incorporation of AgNO3 by in situ method not only helped to impart the antibacterial activity but also changed the contact angle from 81 ± 03° in the case of pristine nanofibers to 74 ± 03°, 61 ± 03°, 50 ± 08°, and 39 ± 1.1°, in the composite scaffolds containing 0.01, 0.03, 0.05, and 0.07 M of Ag salts. The incubation in simulated body fluid at 37°C to induce mineralization on nanofiber scaffolds indicated Ca and P crystals' formation. The antibacterial activity showed significantly more toxicity toward E. coli (8.3 ± 0.9 mm) than S. aureus (1.2 ± 0.1 mm). Biocompatibility studies using MTT assay on the pre-osteoblasts showed that both TiO2 and Ag NPs present in the nanofibers are non-toxic to the bone-like cells. However, results show that a higher concentration of Ag NPs (i.e., 0.07 M) is toxic to cells growing. Finally, all the results suggest that the nanofiber scaffolds have considerable scope for future bone tissue engineering materials.  相似文献   

17.
A new type of polyamide–imides (PAI) was synthesized by direct polycondensation. A series of polyamide–imide metal chelate films was prepared by the transition-metal salts (AgNO3, CuCl2, and CoCl2) mixed with the polyamide–imides in NMP solution. These polyamide–imide metal chelate films were reduced by various reducing agents, and the reduced films exhibited low surface resistivity around 100?101 Ω/cm2. The surfaces of these conductive films were proved to be metallized by means of X-ray analysis. The metal adhered on the film was believed to be responsible for the improvement of electrical conductivity. The effects of kinds and concentrations of metal salts, kinds and concentrations of reducing agents, and reduction time on the conductivity of metallized films were investigated. The IR spectra and SEM observations of unreduced and reduced polymer chelate films were also studied.  相似文献   

18.
We have successfully synthesized polyacrylonitrile (PAN) nanofibers impregnated with Ag nanoparticles by electrospinning method at room temperature. Briefly, the PAN‐Ag composite nanofibers were prepared by electrospinning PAN (10% w/v) in dimethyl formamide (DMF) solvent containing silver nitrate (AgNO3) in the amounts of 8% by weight of PAN. The silver ions were reduced into silver particles in three different methods i.e., by refluxing the solution before electrospinning, treating with sodium borohydride (NaBH4), as reducing agent, and heating the prepared composite nanofibers at 160°C. The prepared PAN nanofibers functionalized with Ag nanoparticles were characterized by field emission scanning electron microscopy (FESEM), SEM elemental detection X‐ray analysis (SEM‐EDAX), transmission electron microscopy (TEM), and ultraviolet‐visible spectroscopy (UV‐VIS) analytical techniques. UV‐VIS spectra analysis showed distinct absorption band at 410 nm, suggesting the formation of Ag nanoparticles. TEM micrographs confirmed homogeneous dispersion of Ag nanoparticles on the surface of PAN nanofibers, and particle diameter was found to be 5–15 nm. It was found that all the three electrospun PAN‐Ag composite nanofibers showed strong antibacterial activity toward both gram positive and gram negative bacteria. However, the antibacterial activity of PAN‐Ag composite nanofibers membrane prepared by refluxed method was most prominent against S. aureus bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
In this paper, a simple and efficient strategy of one-pot synthesis of Ag doped TiO2/ZnO photocatalyst was developed using hydrothermal process. Simultaneous crystallization of Ag and ZnO crystals from their precursor solution containing P25 (TiO2) NPs could form effectively bonded Ag/TiO2/ZnO composite photocatalyst during hydrothermal treatment. Several analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), FT-IR spectroscopy, and photoluminescence spectroscopy have been used to characterize the resulting Ag/TiO2/ZnO photocatalyst. Results showed that ZnO nano-flowers doped with TiO2 and Ag NPs were formed by this simple facile one-step process. The unique properties of Ag NPs on binary semiconductor composite not only provide the decreased rate of electron–hole separation but also prevent from the loss of photocatalyst during recovery due to the fixed attachment of Ag and TiO2 NPs on the surface of flower shaped large ZnO particles. Therefore, as-synthesized composite is an economically and environmentally friendly photocatalyst.  相似文献   

20.
The purpose of this study is to explore how to control the conductivity of gel conveniently and effectively through experiments. First, a kind of acrylamide-based composite with adhesion and conductivity adjustment was prepared by adding silver ions and silver monomers to the gel in one step. The semi interpenetrating network structure formed by the molecular chain of polyacrylamide and catechol modified sodium alginate in the composite is cross-connected with silver ions to form a double network structure. This change of network structure not only makes the structure of gel more stable, but also brings extraordinary conductivity. Secondly, different types of conductive ions and organic solutions were added to the gel system. Electrochemical impedance spectroscopy showed that the addition of silver enhanced the conductivity of the material; When NaNO3 is used to replace water molecules in PAM, the ionic conductivity can be increased by 75.3% (from 2.44 × 10−5 to 20.8 × 10−5 mscm−1). When PDA/PAM was soaked in AgNO3, the ionic conductivity increased in the range of 10.4% ~ 674%. It provides a novel strategy for controlling the conductivity of composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号