首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polymer blends based on high-density polyethylene (HDPE) and acrylonitrile butadiene rubber (NBR) were prepared by a melt blending technique. The mixing parameters such as temperature, time, and speed of mixing were varied to obtain a wide range of properties. The mixing parameters were optimized by evaluating the mechanical properties of the blend over a wide range of mixing conditions. The morphology of the blend indicated a two-phase structure in which NBR phase was dispersed as domains up to 50% of its concentration in the continuous HDPE matrix. However, 70 : 30 NBR/HDPE showed a cocontinuous morphology. The tensile strength, elongation at break, and hardness of the system were measured as a function of blend compostion. As the polymer pair is incompatible, technological compatibilization was sought by the addition of maleic-modified polyethylene (MAPE) and phenolic-modified polyethylene (PhPE). The interfacial activity of MAPE and PhPE was studied as a function of compatibilizer concentration by following the morphology of the blend using scanning electron micrographs. Domain size of the dispersed phase showed a sharp decrease by the addition of small amounts of compatibilizers followed by a leveling off at higher concentrations. Also, more uniformity in the distribution of the dispersed phase was observed in compatibilized systems. The tensile strength of the compatibilized systems showed improvement. The mechanical property improvement, and finer and uniform morphology, of compatibilized systems were correlated with the improved interfacial condition of the compatibilized blends. The experimental results were compared with the current theories of Noolandi and Hong. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
采用环氧氯丙烷对Kevlar纳米纤维(KNFs)表面进行改性,制备了表面改性KNFs(m-KNFs),考察了m-KNFs对羧基丁腈橡胶(XNBR)/丁苯橡胶(SBR)共混胶力学性能的影响.结果表明,m-KNFs可以增强XNBR/SBR共混胶的拉伸性能及撕裂性能,提高硫化胶的热稳定性和耐溶剂性能.添加5份m-KNFs后,...  相似文献   

3.
In this study, nanocomposites based on polyamide 6/carboxylated acrylonitrile butadiene rubber (PA6/XNBR) reinforced by the clay montmorillonite (OMMT) (Cloisite 20A and Cloisite 30B) were prepared by melt mixing. Glycidyl methacrylate-grafted XNBR (XNBR-g-GMA) compatibilizer was used for immiscible blends of PA6/XNBR. The results illustrated that OMMT wanted to be selectively present in the more hydrophilic PA6 phase. Also, by adding the XNBR-g-GMA compatibilizer and increasing OMMT content, tensile strength, rheological and dynamic mechanical properties of the nanocomposites improved. According to transmission electron microscopy (TEM) images, a few layers of OMMT (Cloisite 20A) in the XNBR-g-GMA compatibilizer phase was observed. The results of X-ray diffractometry and TEM analyses demonstrated that the formation of intercalated or exfoliated structures for both types of OMMT nanocomposites. In end of all analysis was found PA6/XNBR reinforced by the Cloisite 30B could be substantially improved by adding XNBR-g-GMA as a compatibilizer when compared to those reinforced by Cloisite 20A.  相似文献   

4.
Based on the character of a clay that could be separated into many 1‐nm thickness monolayers, clay styrene‐butadiene rubber (SBR) nanocomposites were acquired by mixing the SBR latex with a clay/water dispersion and coagulating the mixture. The structure of the dispersion of clay in the SBR was studied through TEM. The mechanical properties of clay/SBR nanocomposites with different filling amounts of clay were studied. The results showed that the main structure of the dispersion of clay in the SBR was a layer bundle whose thickness was 4–10 nm and its aggregation formed by several or many layer bundles. Compared with the other filler, some mechanical properties of clay/SBR nanocomposites exceeded those of carbon black/SBR composites and they were higher than those of clay/SBR composites produced by directly mixing clay with SBR through regular rubber processing means. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1873–1878, 2000  相似文献   

5.
This study deals with the preparation of carboxylated styrene butadiene rubber (XSBR)/multiwall carbon nanotubes (MWCNTs) nanocomposites prepared in the latex form by means of a ball mill. Two types of CNTs, i.e., non-functionalized and OH-functionalized (CNT?COH) were used. The rheological properties, FTIR spectrums, SEM micrographs and stress relaxation experiments were exploited to evaluate the resulting nanocomposites. For a given frequency, both the viscosity and storage modulus increased as the concentration of CNT was augmented with the greatest value for the nanocomposites loaded with CNT?COH. The viscosity of nanocomposites exhibited a shear thinning behavior throughout applied frequency and indicated a power law index of about n?=?0.22. Nanocomposite ATR analyses revealed the presence of physical interaction of H-bonding type between hydroxyl group of CNT?COH and carboxyl group of XSBR for XSBR?CCNTOH nanocomposites. A mechanism based on the chemistry of medium was proposed to explain the development of H-bonding. SEM micrographs confirmed the uniformity of carbon nanotubes dispersion in the resulting microstructure. A two-step innovative stress relaxation experiment was performed on the prepared nanocomposites through which the resulting microstructure of nanocomposites was further explored. The relaxation behavior of nanocomposites (both in first and second steps) were modeled and well predicted using Prony series and the parameters of generalized Maxwell equation for stress relaxation, $ \tau_{i} $ and $ g_{i} $ were computed, as well.  相似文献   

6.
Nanocomposites of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) with (70/30) composition containing different amounts of graphene nanoplates (GNPs) (1, 3, and 5 wt%) were prepared by melt‐blending in a twin‐screw extruder. The structural, morphological, mechanical, and thermal properties of the nanocomposites were investigated. The Young's modulus and flexural modulus of the nanocomposites were increased by 30 and 54%, respectively, when 3 wt% GNPs was added. The flexural strength and tensile strength of the PC/ABS/GNPs nanocomposites increased up to a loading of 3 wt% GNPs. The incorporation of GNPs enhanced the thermal stability and char yield of the nanocomposites. X‐ray diffraction and field emission scanning electron microscopy showed uniform dispersion and alignment of GNPs in PC/ABS matrix. The interaction between the GNPs and the PC/ABS matrix were confirmed by Fourier transform infrared spectra. Therefore, the PC/ABS/GNP nanocomposites with improved flexural and tensile properties, without loss of extensibility and good thermal properties may have promising applications in automotive, electric tools, household, communication, and safety appliances. POLYM. COMPOS., 37:1633–1640, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Abstract

The role of the type of layered silicate platelets, OMMT and rectorite on the mechanical properties, aging resistance and oxygen permeation properties of HNBR/layered silicate nanocomposites was investigated. The effect of peroxide vulcanising agent on the dispersion of layered silicate in the HNBR matrix was also studied. HNBR was mechanically mixed with layered silicate via melt blending method. The results of the test show remarkable improvement in tensile strength, tear strength, aging resistance and oxygen permeation properties of HNBR nanocomposites than that of unfilled HNBR. It is obvious that the OMMT filled nanocomposites have far better properties than that of rectorite filled HNBR.  相似文献   

8.
This study deals with the preparation and characterization of novel thermoplastic polyurethane–urea (TPUU) and carboxylated acrylonitrile butadiene rubber (XNBR) blends. Blends of different compositions were prepared in tetrahydrofuran using a solution technique, following an ultra‐sonication. The chemical reaction between the two inherently immiscible blend phases was determined with the help of Fourier transform infrared‐attenuated total reflectance (FTIR‐ATR) spectroscopy and 1H‐nuclear magnetic resonance (1H‐NMR) spectroscopy. The identification of the new peaks in the FTIR‐ATR spectra corroborates the existence of chemical reaction between the carboxylic functional group of XNBR and the amide group of the TPUU. In addition, an increase in the network crosslink density of the blend investigated using 1H‐NMR spectroscopy further supports the occurrence of the chemical reaction between the XNBR and the TPUU. The scanning and transmission electron micrographs of the blend morphology show a uniform dispersion of the minor TPUU phase in the XNBR. Furthermore, the existence of a single glass transition peak also confirms the enhancement in the interfacial miscibility. Additionally, the incorporation of 5 wt % of organomodified montmorillonite nanoclay improves the mechanical properties to a considerable extent in comparison with the unfilled blend elastomeric material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Wei-Gwo Hwang  Chang-Mou Wu 《Polymer》2004,45(16):5729-5734
Elastomer nanocomposites consisting of nitrile butadiene rubber (NBR) latex and layered silicates are prepared by a modified latex shear blending process aided with ball milling. The mode of dispersion of layered silicates in NBR is partially exfoliated and intercalated when the concentration of layered silicates is below 7.5 wt%, as evidenced by transmission electron microscopy and X-ray diffraction results. The tensile and tear mechanical properties are much higher than that of neat NBR. Specifically, the tensile and tear mechanical properties of the NBR/layered silicates increase by 200 and 60%, respectively. The decomposition temperature of the nanocomposites increases slightly.  相似文献   

10.
In this study, carboxylated acrylonitrile butadiene rubber (xNBR)/expanded graphite (EG) nanocomposites were prepared with a latex compounding technique by ultrasonic stirring. The dispersion of EG in the xNBR matrix was investigated with transmission electron microscopy, scanning electron microscopy, and X‐ray diffraction analysis. EG could be exfoliated into lots of nanosheets dispersing in the xNBR matrix. More EG loading resulted in the presence of a few incompletely exfoliated agglomerates. The mechanical properties (hardness, tensile modulus, and tensile strength) of the xNBR/EG composites were determined. Dynamic mechanical thermal analysis was also performed, and it showed that the nanosheets of EG somewhat immobilized the motion of rubber macromolecular chains and led to the shifting and broadening of the tan δ peak toward higher temperatures. Many other functional properties of EG‐filled xNBR composites were studied, and it was established that the composites had excellent electrical conductivity as well as gas‐barrier and wear properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Blends based on ethylene–propylene–diene monomer rubber (EPDM) and acrylonitrile butadiene rubber (NBR) was prepared. Sulfur was used as the vulcanizing agent. The effects of blend ratio on the cure characteristics and mechanical properties, such as stress–strain behavior, tensile strength, elongation at break, hardness, rebound resilience, and abrasion resistance have been investigated. Tensile and tear strength showed synergism for the blend containing 30% of NBR, which has been explained in terms of morphology of the blends attested by scanning electron micrographs. A relatively cocontinuous morphology was observed for 70 : 30, EPDM/NBR blend system. The experimental results have been compared with the relevant theoretical models. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Multiwalled carbon nanotube/hectorite hybrid filler (HMH) was prepared by simple dry grinding method. It was subsequently used for the reinforcement of technologically compatible acrylonitrile butadiene rubber (NBR)/ ethylene-co-vinyl acetate (EVA) blend through solution intercalation method. Analysis of the prepared blend nanocomposites confirms homogeneous dispersion of the constituent fillers in the polymer matrix and significant interaction between two types of constituent fillers. Mechanical properties of NBR/EVA blend are significantly improved with HMH content up to 4 wt.% followed by reversion. Maximum improvement observed in tensile strength, elongation at break and toughness are 106%, 37% and 171% respectively without significant rise in Young’s modulus. Results also show best dynamic mechanical and dielectric response at 4 wt.% and 3 wt.% HMH content respectively. Enhanced mechanical, dynamic mechanical and dielectric properties of the blend nanocomposites attained may be attributed to fair degree of compatibility between the two polymer matrices, homogeneous dispersion of fillers and improved polymer-filler interaction.  相似文献   

13.
The purpose of this study was to investigate the effect of bare wollastonite (BW) and modified wollastonite (MW) nano‐rods into the styrene butadiene rubber (SBR). SBR nanocomposites were prepared by the incorporation of different wt % (0.3–4.5) of BW and MW nanorods. All nanocomposites were characterized by thermal gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). The particle size and morphology of BW and MW nanorods were characterized by field‐emission scanning electron microscope (FE‐SEM), transmission electron microscope (TEM), and Fourier transform infrared (FTIR) spectrophotometer, while FE‐SEM and AFM analyses were performed for BW/SBR and MW/SBR nanocomposites. The obtained results revealed the existence of stronger interaction between the SBR and MW nanorods into MW/SBR as compared to BW/SBR nanocomposites. FE‐SEM and AFM images showed a perfect dispersion of the MW nanorods in SBR matrix at 3 wt % loading. Thermal stability of MW/SBR nanocomposites was also increased significantly by the addition of MW nanorods. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42811.  相似文献   

14.
A detailed rheologicai analysis over large shear rate intervals has been performed for electron-beam-irradiated blends of polypropylene (PP) and ethylenepropylene-diene monomer (EPDM) rubber. At high frequencies, a lower viscosity results from irradiation compared with unirradiated blends, which implies that the irradiated blends are easily processable via injection molding. At low shear rates, however, the irradiated blends behave like a network, and the viscosity may even exceed the viscosity of the unirradiated blends. This particular behavior can result in the formation of weak weld lines. Aggregation of the dispersed, cross-linked EPDM particles into a skeletal structure is the most probable explanation. In a first attempt, it was tried to correlate the network behavior to the average (shortest) interparticle distance (ID) between two rubber particles, which takes into account both volume fractions and particle size of the dispersed phase. Provided that the EPDM rubber is sufficiently cross-linked, the network behavior becomes more pronounced; i.e., increase in viscosity with decreasing interparticle distance. Above a critical value of the ID, the viscosity does not change and is determined by the PP matrix. As a vast amount of literature indicates, the rheology of blends proves to be difficult to understand. Because of the more stable morphology, compared with usual blends, induced by irradiation, a more valuable interpretation of the rheological behavior is possible.  相似文献   

15.
This paper reports on morphology, rheology and dynamic mechanical properties of polypropylene (PP)/ethylene vinyl acetate (EVA) copolymer/clay nanocomposite system prepared via a single step melt compounding process using a twin screw micro-compounder. Scanning electron microscopic (SEM) investigations revealed that the dispersed phase droplet size was reduced with incorporation of an organo-modified montmorillonite (OMMT). This reduction was more significant in presence of a maleated PP (PP-g-MAH) used as compatibilizer. Phase inversion in the compatibilized blends caused a further decrease in PP droplet size. The OMMT gallery spacing was higher in nanocomposites with EVA as matrix which could be attributed to higher tendency of OMMT nanoparticles towards EVA rather than PP. This enhanced tendency was confirmed by rheological analysis too. Transmission electron microscopy (TEM) results also showed that the majority of OMMT nanoparticles were localized on the interface and within EVA droplets. According to dynamic mechanical analysis, the compatibilized nanocomposites showed higher storage and loss moduli due to better dispersion of OMMT layers. The modulus enhancement of nanocomposites as a function of OMMT volume fraction was modeled by Halpin-Tsai’s-Nielsen expression of modulus for nanocomposites. The results of modeling suggested that the aspect ratio of the intercalated OMMT, in the form of Einstein coefficient (K E), plays a determining role in the modulus enhancement of nanocomposites.  相似文献   

16.
Blends of styrene–butadiene rubber (SBR) and natural rubber (NR) were prepared and their morphology, transport behavior, and dynamic mechanical and mechanical properties were studied. The transport behavior of SBR/NR blends was examined in an atmosphere of n‐alkanes in the temperature range of 25–60°C. Transport parameters such as diffusivity, sorptivity, and permeability were estimated. Network characterization was done using phantom and affine models. The effect of the blend ratio on the dynamic mechanical properties of SBR/NR blends was investigated at different temperatures. The storage modulus of the blend decreased with increase of the temperature. Attempts were made to correlate the properties with the morphology of the blend. To understand the stability of the membranes, mechanical testing was carried out for unswollen, swollen, and deswollen samples. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1280–1303, 2000  相似文献   

17.
This article reports the preparation and characterization of multiwalled carbon nanotubes (MWCNTs)‐filled thermoplastic polyurethane–urea (TPUU) and carboxylated acrylonitrile butadiene rubber (XNBR) blend nanocomposites. The dispersion of the MWCNTs was carried out using a laboratory two roll mill. Three different loadings, that is, 1, 3, and 5 wt % of the MWCNTs were used. The electron microscopy image analysis proves that the MWCNTs are evenly dispersed along the shear flow direction. Through incorporation of the nanotubes in the blend, the tensile modulus was increased from 9.90 ± 0.5 to 45.30 ± 0.3 MPa, and the tensile strength at break was increased from 25.4 ± 2.5 to 33.0 ± 1.5 MPa. The wide angle X‐ray scattering result showed that the TPUU:XNBR blends were arranged in layered structures. These structures are formed through chemical reactions of ? NH group from urethane and urea with the carboxylic group on XNBR. Furthermore, even at a very low loading, the high degree of nanotubes dispersion results in a significant increase in the electrical percolation threshold. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40341.  相似文献   

18.
As a cost-effective and environmentally friendly natural mineral, cryptocrystalline graphite (CG) is applied in rubber materials and its performance has been evaluated. In this work, the filler dispersion and mechanical and tribological properties of carboxylated acrylonitrile butadiene rubber (XNBR)/CG composites by different preparation methods were studied. XNBR/CG composites prepared by latex blending (XNBR/CG-L) exhibited better mechanical and tribological performance, higher toughness, and lower heat build-up than those prepared by mechanical blending (XNBR/CG-M). These differences were ascribed to the filler dispersion degree, filler amount and dispersed size, and also filler–rubber interfacial interaction. Adding CG was conducive to improving the stability of the friction coefficient and reduced the wear rate via the formation of graphite lubricant and transfer films. The tribological performance of XNBR/CG-L was superior to that of XNBR/CG-M because of the improved tensile strength, tear resistance, and toughness as well as lower temperature rise. Scanning electron microscopy (SEM) and optical microscope observation showed a smoother worn surface, less and smaller wear debris of XNBR/CG-L, and a more uniform transfer film on the steel counterpart surface. The relevant results provided new insight into the performance and structural design of CG/rubber composites.  相似文献   

19.
Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.  相似文献   

20.
Composites based on styrene‐butadiene rubber containing organophilic montmorillonite were produced by melt compounding and conventional sulfur curing. The samples were characterized by X‐ray diffraction and both transmission and scanning electron microscopy. The dispersion of the clay and the spacing between the silicate layers revealed the presence of intercalated, aggregated, and partially exfoliated structures. Infrared spectroscopy also provided clear evidence for clay exfoliation and migration of zinc stearate to the surface of the samples. The crosslink density, evaluated through swelling in toluene, decreased with increasing organoclay content. This behavior could be justified by the partial absorption of the curatives on the filler surface. The mechanical properties of nanocomposites significantly increased when compared with those of unfilled rubber. These enhanced properties were attributed to the intercalation/exfoliation of the organoclay. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号