首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Super swelling acrylamide (Am)/N-vinylpyrrolidone (NVP)/3-(2-hydroxyethyl carbamoyl) acrylic acid (HECA) hydrogels were prepared by free radical polymerization of quaternary mixtures of Am, NVP, HECA and water. The hydrogels were used in experiments on swelling, diffusion and adsorption of some water-soluble monovalent cationic dyes such as Crystal Violet (CV), Malachite Green (MG) and Methylene Blue (MB). In the experiment of the adsorption of dyes from their aqueous solutions type-S adsorption isotherm were found. The diffusion of water within the hydrogel was found to have non Fickian character. The uptake of dyes within the hydrogel increased in the following order: MG > MB > CV. The binding ratio of the hydrogel/dye systems was gradually increased with the increase of HECA content in the AAm/NVP/HECA hydrogel.  相似文献   

2.
Batch lignocellulose-g-poly(acrylic acid)/montmorillonite (LNC-g-PAA/MMT) hydrogel nanocomposites were applied as adsorbents. The nanocomposites were characterized by FTIR, XRD, SEM, and TEM. The results showed that montmorillonite (MMT) could react with the monomers and change the structure of polymeric network of the traditional superabsorbent materials, an exfoliated structure was formed in the nanocomposites. The effect of process parameters such as MMT content (wt%), contact time (t), initial concentration of dye solution (C 0), adsorption temperature (T), and pH value (pH) of the dye solution for the removal of methylene blue (MB) from aqueous solution were also studied. The results showed that the adsorption capacity for MB increased with increasing contact time, initial dye concentration, and pH value, but decreased with increasing MMT content and temperature. The adsorption kinetics were better described by the pseudo-second-order equation, and their adsorption isotherms were better fitted for the langmuir equation. By introducing 20 wt% MMT into LNC-g-PAA polymeric network, the obtaining hydrogel composite showed the high adsorption capacity 1994.38 mg/g and economic advantage for MB. The desorption studies revealed that the composite provided the potential for regeneration and reuse after MB dye adsorption, which implied that the composite could be regarded as a potential adsorbent for cationic dye MB removal in a wastewater treatment process.  相似文献   

3.
王永生 《精细化工》2011,28(2):177-182
将聚(丙烯酸-co-丙烯酰胺)/凹凸棒复合吸附剂用于亚甲蓝的吸附,研究了时间、浓度、酸度、表面活性剂和离子强度等因素对吸附性能的影响。复合吸附剂对亚甲蓝的吸附是吸热过程,60℃时吸附量达到1 273.3 mg.g-1,吸附过程符合Langmuir单分子层吸附等温模式,并计算了热力学常数ΔG、ΔH和ΔS。在实验考察范围内吸附过程均符合准二级动力学特征。该复合吸附剂具有高吸附容量和较快的吸附速率,是良好的亚甲蓝吸附剂。  相似文献   

4.
利用丙烯酰氧丙基多面体低聚倍半硅氧烷(Acrylo-POSS)和3-巯基-1-丙烷磺酸盐(MPS)之间的巯基点击反应,一步合成水溶性Janus型多面体低聚倍半硅氧烷(AS-POSS)。通过改变投料比可以调控AS-POSS的水溶性和双键与磺酸钠基团的物质的量比。将AS-POSS与丙烯酸(AA)和丙烯酰胺(AM)共聚制备了一系列不同AS-POSS含量的AS-POSS/PAA/PAM水凝胶,其中AS-POSS质量占单体总质量1%的1% AS-POSS/PAA/PAM水凝胶的平衡溶胀比达到512,断裂伸长率达到1074%,压缩强度为583 kPa,压缩应变为89%,屈服应变为330%,均大于对照组MBA/PAA/PAM水凝胶,表明AS-POSS的引入显著提高了水凝胶的溶胀度,明显增强了水凝胶的韧性、抗压缩性能和动态力学性能。AS-POSS/PAA/PAM水凝胶具有良好的导电性,离子电导率最高可达0.401 S/m。  相似文献   

5.
In this study, removal of methylene blue (MB) from aqueous solution by poly(AMPS-co-IA) hydrogels was examined by batch equilibration technique. The effects of monomer ratio, concentration of initiator and crosslinker, pH, adsorption time, initial dye concentration and adsorption temperature on the removal of MB were studied. The results show that the removal of MB was highly effected by preparation conditions of hydrogel. The maximum removal was observed at 10/90 IA/AMPS monomer ratio, 1.0% KPS, and 10.0% MBAAm concentrations. Removal of MB was strongly affected by pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of MB on hydrogel followed pseudo-second-order kinetics. It was found that the adsorption isotherm of the MB fit Langmuir-type isotherms. From the Langmuir equation, the adsorption capacity was found as 1,000 mg/g for MB dye. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. Ten adsorption—desorption cycles demonstrated that the hydrogels were suitable for repeated use without considerable change in adsorption capacity. The results revealed that this hydrogels have potential to be used as an adsorbent for the removal of MB from aqueous solution.  相似文献   

6.
Hydrogels for absorbing metal ions in wastewater have attracted more attentions in the environmental field especially for recent years. The removal efficiency of hydrogel adsorbents for eliminating metal ions is highly related with the effective contact between adsorbents and adsorbates. However, poor water absorption capacity of the hydrogel adsorbents would restrict on the expose of adsorption sites to the targeted subjects, causing undesirable removal ratio (RR) especially for metal ions at trace level. Thereby, the reported hydrogel adsorbents mainly focus on the removal of high content but not the trace level of metal ions so far. In this work, poly(acrylamide) (PAM)/poly(acrylic acid) (PAA)/Ca(OH)2 composite hydrogel is applied to adsorb trace metal ions. Swelling ratio of such PAM/PAA/Ca(OH)2 gel reaches 2,530 g/g, resulting in effective exposure of active sites and further expected RR for trace metal ions. The RRs of such adsorbent for Cu2+ (initial concentration C0 = 0.064 mg/L), Al3+ (C0 = 0.27 mg/L), Co2+ (C0 = 0.59 mg/L), Cr6+ (C0 = 0.52 mg/L), Mn2+ (C0 = 0.55 mg/L), Ni2+ (C0 = 0.59 mg/L), Zn2+ (C0 = 0.65 mg/L), Ag+ (C0 = 1.08 mg/L), and La3+ (C0 = 1.39 mg/L) are 56.6, 80.8, 41.3, 29.3, 34.6, 44.6, 55.9, 45.8, and 35.5%, respectively. This work broadens the application of hydrogel adsorbent for eliminating trace metal ions from polluted water.  相似文献   

7.
Hydrogels were synthesized from hyperbranched polyglycerol (HPG) and acrylic acid through free‐radical polymerization with HPG as the crosslinker. The HPG/poly(acrylic acid) (PAA) hydrogel could absorb cationic dyes in aqueous solutions because of the existence of a porous structure and the large numbers of hydroxyl and carboxylic groups. With methyl violet chosen as a model compound, the HPG/PAA hydrogel reached a maximum adsorption of 394.12 mg/g at a feed concentration of 1 g/L. The highest removal ratio of 98.33% was observed at a feed concentration of 50 mg/L. The effects of the pH, contact time, and feed concentration on the dye adsorption were investigated. The dye adsorption data fit well with the pseudo‐second‐order and Langmuir models. We believe that the HPG/PAA hydrogels could perform well in appropriate applications in the removal of cationic dyes from aqueous solutions because of their high adsorption capacity and environmental friendliness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42951.  相似文献   

8.
High-strength polyethylene (HSPE), polypropylene (PP), poly(ethylene terephthalate) (PET), and poly(vinyl alcohol) (PVA) textile yarns have been surface-photografted with various functional monomers, such as acrylic acid (AA), acrylamide (AM), glycidyl acrylate (GA) and 4-vinyl pyridine (VP), by means of the continuous presoaking process developed. The dyeing of these surface-modified yarns with various textile dyes has been investigated. In general, considerable improvements of dyeability have been observed. The dye adsorption of the surface-photografted fibers is influenced by many factors, such as type of fiber, amount and properties of the functional monomer grafted on the surface of the fibers, type of textile dye, etc. The fibers surface-grafted with a monomer containing basic groups, such as acrylamide and 4-vinyl pyridine, are efficiently dyed with an acid dye. Conversely, a fiber surface-grafted with acidic functional monomer is easily dyed to deep shades with basic dyes. The dye adsorption increases monotonically with increasing grafting measured in ESCA spectra as relative intensities of relevant lines. The ungrafted HSPE, PP and PET fibers can be dyed to some extent with certain dyes. In the present work, the dye adsorption increased by 3.4 times for HSPE fiber grafted with GA and dyed with the metal complex dye IO, by 7.9 times for PP fiber grafted with AA and dyed with the basic dye MB, by 6.1 times for PET with AM and with the direct dye SL, and by about 15.3 times for PVA with VP and with the acid dye TE.  相似文献   

9.
A novel chitosan (CTS)-based double network Poly(2-acrylaMido-2-Methyl-1-propanesulfonic acid)/Polyacrylamide/CTS hydrogel was synthesized by irradiation initiated. Laponite RD (RD) was used as both dopant and the cross-linking agent. Then the fabricated hydrogel was applied as an efficient adsorbent to remove the methylene blue (MB) in an aqueous solution. This hydrogel has both high strength and good adsorption properties for MB. The results from Brunauer–Emmett–Teller method confirmed that the hydrogel has a large specific surface area (96 m2/g) and developed pore structure, which is available for the contact between the adsorbent and dye molecules. In the adsorption process, the RD provides plenty of negative charges as adsorption sites for MB molecules. The influence of pH, temperature, and adsorbent dose on the adsorption performance was investigated in detail. The experimental data fit well with the pseudo-second-order kinetic model and Langmuir isotherm. Besides, the mechanical strength of the hydrogel was also investigated in this work.  相似文献   

10.
以微波为辐射源,对丙烯酸(AA)水溶液进行辐照制得了PAA水凝胶。将脱水后的PAA水凝胶浸泡于含引发剂过硫酸钾(K_2S_2O_8)和交联剂N,N’-亚甲基双丙烯酰胺(BIS)的N-异丙基丙烯酰胺(NIPAAm)水溶液中,待溶胀平衡后取出,进行第二次微波辐照反应,制备了聚丙烯酸/聚N-异丙基丙烯酰胺互穿聚合物网络(PAA/PNIPAAm IPN)水凝胶,并对其溶胀性能进行了研究。研究结果表明,合成的IPN水凝胶兼具pH敏感性和温度敏感性,有望在药物控制释放领域得到应用。  相似文献   

11.
Present work focused on synthesis of green hydrogel polymer of gum rosin alcohol/psyllium crosslinked poly (acrylic acid) [(GrA-Psy)-cl-PAA] under vacuum condition. Use of both psyllium and gum rosin alcohols as backbones could lessen the burden on the environment, as more natural aspect is drawn in the hydrogel polymer. The various reaction parameters for the synthesis of hydrogel polymer were systematically optimized as a function of percentage swelling. The optimized ecofriendly hydrogel polymer was characterized using XRD, FTIR, FE-SEM and TGA techniques, which supported the successful formation of crosslinked three-dimensional network structures. (GrA-Psy)-cl-PAA was further studied as an adsorbent for the removal of methylene blue dye from an aqueous solution. Adsorption parameters such as the amount of adsorbent and pH were optimized to obtain the maximum percentage of dye removal. Kinetics of the adsorption process was analyzed using pseudo-first-order, pseudo-second-order and Elovich kinetic models. Adsorption kinetics followed pseudo-second-order model (non-linear) for all the concentrations studied. Non-linear forms of Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich isotherm models were studied for the adsorption process and it was observed that it goes well with both Langmuir and Freundlich isotherms. Thermodynamic parameters were also evaluated which indicated that the adsorption process was exothermic and spontaneous. Furthermore, the candidate polymer retained a reusability tendency for two consecutive cycles of adsorption/desorption. Thus, the synthesized novel material was taken as a potential to act as green adsorbent in treatment of industrial wastewater.  相似文献   

12.
以丙烯酸(AA)和壳聚糖(CS)为原料,N,N''-亚甲基双丙烯酰胺(MBA)为交联剂,利用辉光放电电解等离子(GDEP)技术在水溶液中一步引发制备壳聚糖/聚丙烯酸(CS/PAA)水凝胶。采用FT-IR、XRD和SEM对水凝胶的结构和形貌进行表征,考察了溶液pH、吸附时间和初始浓度对Cu2 和Cd2 吸附的影响,探讨了水凝胶的重复利用性。结果表明,丙烯酸成功接枝到壳聚糖链上,水凝胶呈现多孔的三维网络结构,CS/PAA对Cu2 和Cd2 的吸附符合Langmuir 吸附等温式和准二级动力学模型,由Langmuir 模型得到的最大理论吸附量为161.8和327.9 mg/g,该水凝胶在EDTA-4Na溶液中具有良好的再生和重复利用性。  相似文献   

13.
This work developed an effective way to improve the methylene blue (MB) adsorption performance of cellulose-based hydrogel by modified with tannic acid (TA). HEC-co-p(AA-AM)/TA hydrogel was synthesized by grafting of acrylic acid (AA) and acrylamide (AM) onto hydroxyethyl cellulose (HEC), followed by modified with TA. Fourier transform infrared spectroscopy manifested that AA and AM were successfully grafted onto the hydrogel, and TA was immobilized in the hydrogel. Field emission scanning electron microscope demonstrated that the hydrogel after TA modification had a homogeneous pore structure. Brunauer-Emmett-Teller (BET) surface areas, total pore volume, and average pore diameters of the hydrogel are 11.821 m2 g−1, 0.0641 cm3 g−1, and 2.538 nm, respectively. The high swelling ratio (1179.2 g g−1 in deionized water) was in favor of the MB adsorption. The results of the adsorption experiments illustrated that HEC-co-p(AA/AM) hydrogel had excellent MB adsorption performance. As the pH increases, the electrostatic attraction is enhanced, and the adsorption capacity is improved. The adsorption process was more fit with pseudo-second-order kinetics, and the maximum adsorption capacity (3438.27 mg g−1) was determined by Langmuir model. Thermodynamic studies suggested that the adsorption process is spontaneous, exothermic, and entropy reduction. X-ray photoelectron spectroscopy analysis confirmed that MB molecules were reacted with the oxygen atoms in hydroxyl and carboxyl groups by ion-exchange. High reusability demonstrated that the hydrogel could be a potential candidate for removal cationic dye from industrial effluents.  相似文献   

14.
A novel hydrogel poly(acrylamide‐co‐poly‐N‐methylacrylamide) grafted katira gum (KG) was synthesized via free radical copolymerization using a mixture of acrylamide and N‐methylacrylamide in presence of N,N′‐methylene‐bis‐acrylamide as a crosslinking agent. A series of hydrogels (KG‐1 to KG‐6) were prepared by varying amount of acrylamide and N‐methylacryamide. Poly‐acrylamide‐g‐katira gum (PAM‐g‐KG) and poly‐N‐methylacrylamide‐g‐katira gum (PNMA‐g‐KG) hydrogels were also prepared using same crosslinking agent. Swelling characteristics of all the prepared hydrogels in water were evaluated and the hydrogel with best swelling property (KG‐6) was identified. The hydrogel KG‐6 was characterized by FTIR, X‐ray diffractometer, and scanning electron microscopy and was used for the adsorption of textile dyes namely methylene blue (MB), malachite green (MG), and congo red (CR) from single and ternary solutions. Adsorption dynamics, kinetics, isotherm, and thermodynamics of all the prepared hydrogels were studied in the ternary dye solutions. The sorption kinetics data were fitted well to pseudo‐second order and the equilibrium adsorption data were found to follow Freundlich isotherm model. The thermodynamics studies showed that the adsorption process was spontaneous and exothermic in nature. The preferential dye adsorption by the hydrogel was followed in the order MB > MG > CR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45958.  相似文献   

15.
The formation of interpolymer complexes (IPC) between poly(acrylic acid) (PAA) and poly(acrylamide) (PAM), poly(N,N-dimethylacrylamide) (PDMA), and statistical copolymers of acrylamide (AM) and N,N-dimethylacrylamide (DMA) has been studied as a function of pH, salt concentration and temperature (0–70 °C). The cloud points of dilute solutions were measured by turbidimetry and phase diagrams were determined as a function of temperature and pH in pure water and as a function of pH and salt concentration at room temperature. For each temperature and salt concentration a critical pH (pHcrit) below which IPC are observed was defined. In the case of PAA/PAM, pHcrit continuously decreased with increasing temperature, from pH 3.5 at 0 °C to pH 1.9 at 60 °C (UCST-type). In the case of PAA/PDMA, pHcrit, increased with temperature. The LCST-type behavior of the hydrogen-bonding complex formed between PAA and PDMA was attributed to the dimethyl substitution of amide groups that puts in hydrophobic interactions at high temperature. PAA and statistical copolymers P(AM-co-DMA) showed an intermediate behavior between PAA/PAM and PAA/PDMA with a continuous shift from UCST-type to LCST-type with increasing amount of DMA. This behavior can be attributed to changes in configurational entropy due to the IPC formation and (for PDMA) to the release of water molecules initially confined in hydrophobic hydration cages around DMA units. While at low salt concentration, the stability of PAA/PAM and PAA/PDMA complexes only slightly increases with the screening of ionized acrylic units, there is a sharp increase of pHcrit at high salt concentration in relation with the weakening of the solvent quality. In this regime, the complex formation of PAA/PDMA is greatly enhanced compared to PAA/PAM due to the interference of hydrophobic interactions.  相似文献   

16.
以纸浆纤维素为骨架接枝单体丙烯酸和丙烯酰胺,在无N2保护下利用微波辅助引发,考察了纸浆纤维/丙烯酸/丙烯酰胺质量比、单体浓度、引发剂用量和交联剂用量对材料吸水性能的影响,通过FTIR、XRD对所得吸水材料进行了结构表征。所得吸水材料为白色透明薄膜状,易于加工成型,吸水后柔软度及强度很高,纸浆质量分数为25%时吸去离子水倍率为471g/g,吸0.9%NaCl水溶液倍率为135g/g,吸雨水倍率为89g/g,并可反复使用,具有一定的应用价值。  相似文献   

17.
In the present study, synthesis of poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite with different amount of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker was successfully carried out for the removal of crystal violet (CV), methylene blue (MB) and methyl red (MR) from aqueous solution. Hydrogel nanocomposite was characterized by FT-IR, SEM, EDS, XRD and TGA analysis. Several important parameters were investigated to obtain maximum adsorption capacity. Adsorption behavior of hydrogel nanocomposite was investigated for the adsorption of dyes and it was found to remove about 80% for CV, 89% for MB and 51% for MR in 50 mg/L of dyes solutions at pH 7 and about 86% for CV, 93% for MB and 23% for MR at pH 12. Kinetic studies revealed that the applicability of pseudo-first-order and pseudo-second-order model for the adsorption of CV, MB and MR. The adsorption isotherm was studied in 25, 35, 45 and 55 °C using Langmuir, Freundlich, Temkin and Jovanovic models and the adsorption data were well described by Freundlich isotherm model. Hydrogel nanocomposite showed 155, 176 and 113 mg/g maximum adsorption capacity for CV, MB and MR respectively. Negative values of ΔG0 for all three dyes suggested the feasibility of dyes removal and support for spontaneous adsorption of CV, MB and MR on hydrogel nanocomposite. Desorption of dyes from the dye loaded hydrogel nanocomposite was simply done in ethanol. The results indicate that the prepared poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes.
Graphical abstract Graphical abstract illustrating the preparation and dye adsorption processes of the poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite
  相似文献   

18.
The adsorption isotherms of poly(acrylic acid) (PAA) onto alumina powder have been determined as a function of pH, ionic strength, and magnesium-ion concentration. The adsorption of PAA is strongly enhanced by magnesium ions in alkaline media but less affected under acidic conditions. The adsorption isotherms display a maximum when PAA is fully complexed with magnesium ions in the solution, corresponding to a ratio of 0.25 ± 0.05 [Mg2+]/[acrylic acid monomer]. The decrease in adsorbed amount with an increase in PAA concentration at constant magnesium-ion concentration is related to a decrease in the complexation ratio.  相似文献   

19.
Carboxymethyl cellulose (CMC) grafted poly(methyl methacrylate)/Cloisite 30B nanocomposite hydrogels were prepared for adsorptive removal of auramine-O (as a cationic dye model) from wastewater. For the synthesis of nanocomposite hydrogel by free radical polymerization method, potassium persulfate (KPS), methyl methacrylate (MMA), N,N′-methylene bisacrylamide (MBA) and Cloisite 30B were used as initiator, monomer, cross-linker and nano-filler, respectively. The nanocomposite hydrogels were characterized by FTIR, TGA, SEM and XRD techniques. The FTIR results showed that the monomer was grafted onto carboxymethyl cellulose chains successfully. Swelling behavior of nanocomposite hydrogel as a function of KPS, MBA, MMA concentration and CMC/Cloisite 30B weight ratio was studied by Taguchi method using Minitab 16 software. According to ANOVA results, the most effective factor of equilibrium swelling of nanocomposite hydrogel was CMC/Cloisite 30B weight ratio. Addition of Cloisite 30B to hydrogel up to a certain amount improved swelling, though its high amount decreased swelling. The effects of pH and ionic strength on swelling of optimum hydrogels were investigated. Maximum swelling of nanocomposite hydrogel occurred at pH 7.0. The kinetic data of adsorption fitted well to pseudo-second-order model. The best isotherm for investigation of adsorption mechanism was Langmuir model suggesting the formation of a monolayer on the adsorbent surface. FTIR results, before and after auramine-O adsorption, showed that complexation is the main mechanism of adsorption. High adsorption capacity of nanocomposite hydrogels made them more efficient in wastewater treatment application.  相似文献   

20.
A series of poly(acrylic acid‐co‐acrylamide) (PAA)/activated carbon (AC) composite hydrogels were rapidly prepared via frontal polymerization (FP). It was found that an increase in the concentration of AC caused an increase in the front velocity (Vf) and the highest front temperature (Tmax). It may be attributed to that AC particles could increase the liquid viscosity of reaction mixture and remain the reaction heat during FP. The Fourier transform infrared and scanning electron microscopy (SEM) confirmed that AC particles had entered the hydrogel network, and many spherical AC particles with an average diameter of 0.5–1 μm had been dispersed homogeneously in the PAA hydrogel matrix. The swelling behavior showed that the equilibrium swelling values of hydrogels increased when the concentration of AC particles increased. Adsorption studies showed that incorporation of AC particles into PAA hydrogel matrix could increase the sites of interaction between the hydrogels and crystal violet molecules and result in an increase of adsorption capacities of hydrogels toward dyes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号