首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Electrolyte modulation and electrode structure design are two common strategies to suppress dendrites growth on Li metal anode. In this work, a self-adaptive electrode construction method to suppress Li dendrites growth is reported, which merges the merits of electrolyte modulation and electrode structure design strategies. In detail, negatively charged titania nanosheets with densely packed nanopores on them are prepared. These holey nanosheets in the electrolyte move spontaneously onto the anode under electrical field, building a mesoporous structure on the electrode surface. The as-formed porous electrode has large surface area with good lithiophilicity, which can efficiently transfer lithium ion (Li+) inside the electrode, and induce the genuine lithium plating/stripping. Moreover, the negative charges and nanopores on the sheets can also regulate the lithium-ion flux to promote uniform deposition of Li metal. As a result, the symmetric and full cells using the holey titania nanosheets containing electrolyte, show much better performance than the ones using electrolyte without holey nanosheets inside. This work points out a new route for the practical applications of Li-metal batteries.  相似文献   

2.
    
Li metal anode is promising to achieve high-energy-density battery. However, it has rapid capacity fading due to the generation of inactive Li (dead Li), especially at high current density. This study reveals that the random distribution of Li nuclei leads to large uncertainty for the further growth behavior on Cu foil. Here, periodical regulation of Li nucleation sites on Cu foil by ordered lithiophilic micro-grooves is proposed to precisely manipulate the Li deposition morphology. The management of Li deposits in the lithiophilic grooves can induce high pressure on the Li particles, leading to the formation of dense Li structure and smooth surface without dendrite growth. Li deposits comprising tightly packed large Li particles largely reduce the side reaction and the generation of isolated metallic Li at high current density. Less dead Li accumulating on the substrate significantly prolongs the cycling life of full cells with limited Li inventory. The precise manipulation of the Li deposition on Cu is promising for high-energy and stable Li metal batteries.  相似文献   

3.
4.
    
Failure mechanisms associated with silicon‐based anodes are limiting the implementation of high‐capacity lithium‐ion batteries. Understanding the aging mechanism that deteriorates the anode performance and introducing novel‐architectured composites offer new possibilities for improving the functionality of the electrodes. Here, the characterization of nano‐architectured composite anode composed of active amorphous silicon domains (a‐Si, 20 nm) and crystalline iron disilicide (c‐FeSi2, 5–15 nm) alloyed particles dispersed in a graphite matrix is reported. This unique hierarchical architecture yields long‐term mechanical, structural, and cycling stability. Using advanced electron microscopy techniques, the nanoscale morphology and chemical evolution of the active particles upon lithiation/delithiation are investigated. Due to the volumetric variations of Si during lithiation/delithiation, the morphology of the a‐Si/c‐FeSi2 alloy evolves from a core‐shell to a tree‐branch type structure, wherein the continuous network of the active a‐Si remains intact yielding capacity retention of 70% after 700 cycles. The root cause of electrode polarization, initial capacity fading, and electrode swelling is discussed and has profound implications for the development of stable lithium‐ion batteries.  相似文献   

5.
    
Uncontrollable Li dendrite growth and low Coulombic efficiency severely hinder the application of lithium metal batteries. Although a lot of approaches have been developed to control Li deposition, most of them are based on inhibiting lithium deposition on protrusions, which can suppress Li dendrite growth at low current density, but is inefficient for practical battery applications, with high current density and large area capacity. Here, a novel leveling mechanism based on accelerating Li growth in concave fashion is proposed, which enables uniform and dendrite‐free Li plating by simply adding thiourea into the electrolyte. The small thiourea molecules can be absorbed on the Li metal surface and promote Li growth with a superfilling effect. With 0.02 m thiourea added in the electrolyte, Li | Li symmetrical cells can be cycled over 1000 cycles at 5.0 mA cm?2, and a full cell with LiFePO4 | Li configuration can even maintain 90% capacity after 650 cycles at 5.0 C. The superfilling effect is also verified by computational chemistry and numerical simulation, and can be expanded to a series of small chemicals using as electrolyte additives. It offers a new avenue to dendrite‐free lithium deposition and may also be expanded to other battery chemistries.  相似文献   

6.
    
Lithium–sulfur (Li–S) batteries are considered as one of the most promising options to realize rechargeable batteries with high energy capacity. Previously, research has mainly focused on solving the polysulfides' shuttle, cathode volume changes, and sulfur conductivity problems. However, the instability of anodes in Li–S batteries has become a bottleneck to achieving high performance. Herein, the main efforts to develop highly stable anodes for Li–S batteries, mainly including lithium metal anodes, carbon‐based anodes, and alloy‐based anodes, are considered. Based on these anodes, their interfacial engineering and structure design are identified as the two most important directions to achieve ideal anodes. Because of high reactivity and large volume change during cycling, Li anodes suffer from severe side reactions and structure collapse. The solid electrolyte interphase formed in situ by modified electrolytes and ex situ artificial coating layers can enhance the interfacial stability of anodes. Replacing common Li foil with rationally designed anodes not only suppresses the formation of dendritic Li but also delays the failure of Li anodes. Manipulating the anode interface engineering and rationally designing anode architecture represents an attractive path to develop high‐performance Li–S batteries.  相似文献   

7.
    
Metal oxide nanosheets have attracted great attention in various fields, such as energy storage, catalysis, and sensors. Current synthesis methods of metal oxide nanosheets are laborious and not scalable. Herein, a facile and scalable method for the synthesis of metal oxide nanosheets is presented, which requires neither hydro‐/solvothermal conditions nor postsynthesis template removal. The synthesis is versatile, as evidenced by the wide variety of metal oxide nanosheets derived. Nanosheet properties such as crystallinity, crystallite size, and carbon content can be controlled by tuning the synthesis conditions. The metal oxide nanosheets demonstrate promising performance as Li‐ion battery anodes.  相似文献   

8.
9.
    
Na‐ion cointercalation in the graphite host structure in a glyme‐based electrolyte represents a new possibility for using carbon‐based materials (CMs) as anodes for Na‐ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na‐ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN‐2800 prepared by heating at 2800 °C has a distinctive sp2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm?1, presenting significantly high rate capability at 600 C (60 A g?1) and stable cycling behaviors over 40 000 cycles as an anode for Na‐ion storage. The results of this study show the unusual graphitization behaviors of a char‐type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN‐2800, even surpassing those of supercapacitors.  相似文献   

10.
    
The Li metal anode has been long sought-after for application in Li metal batteries due to its high specific capacity (3860 mAh g−1) and low electrochemical potential (−3.04 V vs the standard hydrogen electrode). Nevertheless, the behavior of Li metal in different environments has been scarcely reported. Herein, the temperature-dependent behavior of Li metal anodes in carbonate electrolyte from the micro- to macroscales are explored with advanced synchrotron-based characterization techniques such as X-ray computed tomography and energy-dependent X-ray fluorescence mapping. The importance of testing methodology is exemplified, and the electrochemical behavior and failure modes of Li anodes cycled at different temperatures are discussed. Moreover, the origin of cycling performance at different temperatures is identified through analysis of Coulombic efficiencies, surface morphology, and the chemical composition of the solid electrolyte interphase in quasi-3D space with energy-dependent X-ray fluorescence mappings coupled with micro-X-ray absorption near edge structure. This work provides new characterization methods for Li metal anodes and serves as an important basis toward the understanding of their electrochemical behavior in carbonate electrolytes at different temperatures.  相似文献   

11.
It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g?1, respectively, at current density of 100 mA g?1. These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2. Cyclic voltammetry and X‐ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used.  相似文献   

12.
    
To address the problems associated with Li metal anodes, a fluoride-rich solid-like electrolyte (SLE) that combines the benefits of solid-state and liquid electrolytes is presented. Its unique triflate-group-enhanced frame channels facilitate the formation of a functional inorganic-rich solid electrolyte interphase (SEI), which not only improves the reversibility and interfacial charge transfer of Li anodes but also ensures uniform and compact Li deposition. Furthermore, these triflate groups contribute to the decoupling of Li+ and provide hopping sites for rapid Li+ transport, enabling a high room-temperature ionic conductivity of 1.1 mS cm−1 and a low activation energy of 0.17 eV, making it comparable to conventional liquid electrolytes. Consequently, Li symmetric cells using such SLE achieve extremely stable plating/stripping cycling over 3500 h at 0.5 mA cm−2 and support a high critical current up to 2 mA cm−2. The assembled Li||LiFePO4 solid-like batteries exhibit exceptional cyclability for over 1 year and a half, even outperforming liquid cells. Additionally, high-voltage cylindrical cells and high-capacity pouch cells are demonstrated, corroborating much simpler processibility in battery assembly compared to all-solid-state batteries.  相似文献   

13.
    
Li3VO4 is a potential anode for Li‐ion batteries owing to its safe discharge plateau and high capacity, but the reported reversible capacity is still far from its theoretical value (592 mAh g−1). Here, for the first time, a Li3VO4 anode is reported with reversible capacity approaching the theoretical value. Li3VO4 aggregates hybridized with carbon (Li3VO4/C) are first fabricated, and then dramatically transform into well dispersed Li3VO4 nanocrystals (NCs) anchoring on carbon nanoflakes (NFs) by electrochemical reconstruction. In the Li3VO4/C NC‐on‐NF structures, the small‐sized Li3VO4 NCs, the flexible carbon NFs, and the good dispersity provide high Li‐ion storage, electronic conductivity and stability, respectively. Resultingly, outstanding electrochemical performance of the Li3VO4/C is achieved with discharge and charge capacities of 542 and 541 mAh g−1 after 300 cycles at a specific current of 150 mA g−1. After 1000 cycles at a specific current of 2000 mA g−1, the discharge and charge capacities are maintained at 422 and 421 mAh g−1. When matching with a 4 V cathode, the specific energy density of the Li3VO4/C is 4.2 times of Li4Ti5O12 and 1.2 times of graphite, and the volumetric energy density is 3.2 times of Li4Ti5O12 and 1.4 times of graphite.  相似文献   

14.
15.
    
Holey 2D metal oxides have shown great promise as functional materials for energy storage and catalysts. Despite impressive performance, their processing is challenged by the requirement of templates plus capping agents or high temperatures; these materials also exhibit excessive thicknesses and low yields. The present work reports a metal‐based coordination polymer (MCP) strategy to synthesize polycrystalline, holey, metal oxide (MO) nanosheets with thicknesses as low as two‐unit cells. The process involves rapid exfoliation of bulk‐layered, MCPs (Ce‐, Ti‐, Zr‐based) into atomically thin MCPs at room temperature, followed by transformation into holey 2D MOs upon the removal of organic linkers in aqueous solution. Further, this work represents an extra step for decorating the holey nanosheets using precursors of transition metals to engineer their band alignments, establishing a route to optimize their photocatalysis. The work introduces a simple, high‐yield, room‐temperature, and template‐free approach to synthesize ultrathin holey nanosheets with high‐level functionalities.  相似文献   

16.
    
Low Coulombic efficiency (CE) and safety issues are huge problems that hinder the practical application of Li metal anodes. Constructing Li host structures decorated with functional species can restrain the growth of Li dendrites and alleviate the great volume change. Here, a 3D porous carbonaceous skeleton modified with rich lithiophilic groups (Zn, ZnO, and Zn(CN)2) is synthesized as a Li host via one-step carbonization of a triazole-containing metal-organic framework. The nano lithiophilic groups serve as preferred sites for Li nucleation and growth, regulating a uniform Li+ flux and uniform current density distribution. In addition, the 3D porous network functions as a Li reservoir that provides rich internal space to store Li, thus alleviating the volumetric expansion during Li plating/stripping process. Thanks to these component and structural merits, an ultra-low overpotential for Li deposition is achieved, together with high CE of over 99.5% for more than 500 cycles at 1 mA cm−2 and 1 mAh cm−2 in half cells. The symmetric cells exhibit a prolonged cycling of 900 h at 1 mA cm−2. The full cells by coupling Zn/ZnO/Zn(CN)2@C-Li anode with LiFePO4 cathode deliver a high capacity retention of 94.3% after 200 cycles at 1 C.  相似文献   

17.
    
In this work, combining both advantages of potassium‐ion batteries and dual‐ion batteries, a novel potassium‐ion‐based dual‐ion battery (named as K‐DIB) system is developed based on a potassium‐ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K‐DIB presents a high reversible capacity of 66 mAh g?1 at a current density of 50 mA g?1 over the voltage window of 3.0–5.0 V, and exhibits excellent long‐term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K‐DIB is further improved. It delivers a high energy density of 155 Wh kg?1 at a power density of 116 W kg?1, which is comparable with commercial lithium‐ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K‐DIB shows attractive potential for future energy storage application.  相似文献   

18.
19.
    
Anodes involving conversion and alloying reaction mechanisms are attractive for potassium‐ion batteries (PIBs) due to their high theoretical capacities. However, serious volume change and metal aggregation upon potassiation/depotassiation usually cause poor electrochemical performance. Herein, few‐layered SnS2 nanosheets supported on reduced graphene oxide (SnS2@rGO) are fabricated and investigated as anode material for PIBs, showing high specific capacity (448 mAh g?1 at 0.05 A g?1), high rate capability (247 mAh g?1 at 1 A g?1), and improved cycle performance (73% capacity retention after 300 cycles). In this composite electrode, SnS2 nanosheets undergo sequential conversion (SnS2 to Sn) and alloying (Sn to K4Sn23, KSn) reactions during potassiation/depotassiation, giving rise to a high specific capacity. Meanwhile, the hybrid ultrathin nanosheets enable fast K storage kinetics and excellent structure integrity because of fast electron/ionic transportation, surface capacitive‐dominated charge storage mechanism, and effective accommodation for volume variation. This work demonstrates that K storage performance of alloy and conversion‐based anodes can be remarkably promoted by subtle structure engineering.  相似文献   

20.
Metal molybdates nanostructures hold great promise as high‐performance electrode materials for next‐generation lithium‐ion batteries. In this work, the facial design and synthesis of monodisperse FeMoO4 nanocubes with the edge lengths of about 100 nm have been successfully prepared and present as a novel anode material for highly efficient and reversible lithium storage. Well‐defined single‐crystalline FeMoO4 with high uniformity are first obtained as nanosheets and then self‐aggregated into nanocubes. The morphology of the product is largely controlled by the experimental parameters, such as the reaction temperature and time, the ratio of reactant, the solution viscosity, etc. The molybdate nanostructure would effectively promote the insertion of lithium ions and withstand volume variation upon prolonged charge/discharge cycling. As a result, the FeMoO4 nanocubes exhibit high reversible capacities of 926 mAh g−1 after 80 cycles at a current density of 100 mA g−1 and remarkable rate performance, which indicate that the FeMoO4 nanocubes are promising materials for high‐power lithium‐ion battery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号