首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
The hollow sandwich core–shell micro-nanomaterials are widely used in materials, chemistry, and medicine, but their fabrication, particularly for transition metal phosphides (TMPs), remains a great challenge. Herein, a general synthesis strategy is presented for binary TMPs hollow sandwich heterostructures with vertically interconnected nanosheets on the inside and outside surfaces of polyhedron FeCoPx/C, demonstrated by a variety of transition metals (including Co, Fe, Cd, Mn, Cu, Cr, and Ni). Density functional theory (DFT) calculation reveals the process and universal mechanism of layered double hydroxide (LDH) growth on Prussian blue analog (PBA) surface in detail for the first time, which provides the theoretical foundations for feasibility and rationality of the synthesis strategy. This unique structure exhibits a vertical nanosheet-shell-vertical nanosheet configuration combining the advantages of sandwich, hollow and vertical heterostructures, effectively achieving their synergistic effect. As a proof-of-concept of their applications, the CoNiPx@FeCoPx/C@CoNiPx hollow sandwich polyhedron architectures (representative samples) show excellent catalytic performance for the oxygen evolution reaction (OER) in alkaline electrolytes. This work provides a general method for constructing hollow-sandwich micro-nanostructures, which provides more ideas and directions for design of micro-nano materials with special geometric topology.  相似文献   

2.
2D materials, such as transition metal dichalcogenides (TMDs), graphene, and boron nitride, are seen as promising materials for future high power/high frequency electronics. However, the large difference in the thermal expansion coefficient (TEC) between many of these 2D materials could impose a serious challenge for the design of monolayer‐material‐based nanodevices. To address this challenge, alloy engineering of TMDs is used to tailor their TECs. Here, in situ heating experiments in a scanning transmission electron microscope are combined with electron energy‐loss spectroscopy and first‐principles modeling of monolayer Mo1?xWxS2 with different alloying concentrations to determine the TEC. Significant changes in the TEC are seen as a function of chemical composition in Mo1?xWxS2, with the smallest TEC being reported for a configuration with the highest entropy. This study provides key insights into understanding the nanoscale phenomena that control TEC values of 2D materials.  相似文献   

3.
4.
Two‐dimensional transition metal dichalcogenides (TMDs) have been regarded as one of the best nonartificial low‐dimensional building blocks for developing spintronic nanodevices. However, the lack of spin polarization in the vicinity of the Fermi surface and local magnetic moment in pristine TMDs has greatly hampered the exploitation of magnetotransport properties. Herein, a half‐metallic structure of TMDs is successfully developed by a simple chemical defect‐engineering strategy. Dual native defects decorate titanium diselenides with the coexistence of metal‐Ti‐atom incorporation and Se‐anion defects, resulting in a high‐spin‐polarized current and local magnetic moment of 2D Ti‐based TMDs toward half‐metallic room‐temperature ferromagnetism character. Arising from spin‐polarization transport, the as‐obtained T‐TiSe1.8 nanosheets exhibit a large negative magnetoresistance phenomenon with a value of ?40% (5T, 10 K), representing one of the highest negative magnetoresistance effects among TMDs. It is anticipated that this dual regulation strategy will be a powerful tool for optimizing the intrinsic physical properties of TMD systems.  相似文献   

5.
Anisotropic plasmon coupling in closely spaced chains of Ag nanoparticles is visualized using electron energy‐loss spectroscopy in a scanning transmission electron microscope. For dimers as the simplest chain, mapping the plasmon excitations with nanometer spatial resolution and an energy resolution of 0.27 eV intuitively identifies two coupling plasmons. The in‐phase mode redshifts from the ultraviolet region as the interparticle spacing is reduced, reaching the visible range at 2.7 eV. Calculations based on the discrete‐dipole approximation confirm its optical activeness, where the longitudinal direction is constructed as the path for light transportation. Two coupling paths are then observed in an inflexed four‐particle chain.  相似文献   

6.
球差校正扫描透射电子显微镜(STEM)因其原子级的空间分辨率和元素解析能力,在纳米功能材料的结构和成分分析中得到广泛使用。扫描透射电子显微镜高角环形暗场像技术(STEM-HAADF)凭借独特的原子序数衬度(Z衬度)和电子通道效应,在负载型纳米催化剂的结构研究中有着显著优势。通过STEM-HAADF成像,研究人员不仅可以直接观测到单个贵金属原子在较轻的载体上的实空间分布,还可以实现对载体表面上不同的负载贵金属物种的统计分析,这为近十年兴起的单原子催化剂研究提供了最重要的结构分析支持。相对于STEM-HAADF成像,基于STEM的X射线能谱(EDS)和电子能量损失谱(EELS)的谱学分析技术则能够在纳米尺度乃至原子尺度提供直接的化学成分或化学价态信息。成像和谱学的结合能够更准确地确定负载的金属原子在基底上的空间构型。进一步将原位电镜技术引入扫描透射电子显微镜内,则可以在时间尺度上探究催化剂在接近工作环境下的结构演化,从而更全面地揭示催化剂化学活性的结构起源与失效机制。本文结合近几年的部分代表性研究成果,简要介绍球差校正STEM技术在原子级分散负载催化剂研究中的应用,并对其在该研究领域的进一步发展进行了展望。  相似文献   

7.
Plasmonics has emerged as an attractive field driving the development of optical systems in order to control and exploit light–matter interactions. The increasing interest around plasmonic systems is pushing the research of alternative plasmonic materials, spreading the operability range from IR to UV. Within this context, gallium appears as an ideal candidate, potentially active within a broad spectral range (UV–VIS–IR), whose optical properties are scarcely reported. Importantly, the smart design of active plasmonic materials requires their characterization at high spatial and spectral resolution to access the optical fingerprint of individual nanostructures, attainable by transmission electron microscopy techniques (i.e., by means of electron energy‐loss spectroscopy, EELS). Therefore, the optical response of individual Ga nanoparticles (NPs) by means of EELS measurements is analyzed, in order to spread the understanding of the plasmonic response of Ga NPs. The results show that single Ga NPs may support several plasmon modes, whose nature is extensively discussed.  相似文献   

8.
Magnesium is one of the lightest structural metals that has been used in different industries such as automobile, aerospace and electronics. However, in fusion joining of magnesium alloys, porosity is one of the main drawbacks to achieve a weld with desirable properties. The oxide layer existing on the surface of magnesium alloy is one of the causes of pore formation in the weld bead. In the current study, a fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. Two groups of samples are studied: as-received (AR) surfaces (where an oxide layer remains on the surface) and treated surfaces. The surface treatment includes two techniques: mechanically removed (MR) and the use of a plasma arc (PA) as a preheating source. Also, a separate set of experiments are designed for preheating samples in a furnace for comparison with the PA-treated results. To reveal the chemical compositions of the welds and metal sheet surfaces, an energy dispersive spectroscopy (EDS) is performed. Surface chemical compositions are tested by X-ray photoelectron spectroscopy-reflected electron energy loss spectroscopy (XPS-REELS) to characterize the surface composition on AR and PA-treated samples. The dynamic behavior of the weld pool and laser-induced plasma plume is monitored in real-time using a high speed CCD camera to investigate the stability of the laser welding process. The presence of the oxide layer at the faying surface of two overlapped sheets results in an unstable process. The obtained results reveal that the preheating procedure can effectively mitigate pore formation at the interface of the two overlapped sheets.  相似文献   

9.
The function of ≈3‐nm thick lithium fluoride (LiF) buffer layers in combination with high work function metal contacts such as coinage metals and ferromagnetic metals for use in organic electronics and spintronics is investigated. The energy level alignment at the organic/LiF/metal interface is systematically studied using photoelectron spectroscopy and the integer charge transfer model. The thick‐LiF buffer layer is found to pin the Fermi level to ≈3.8 eV, regardless of the work function of the initial metal due to energy level bending in the LiF layer caused by depletion of defect states. At 3‐nm thickness, the LiF buffer layer provides full coverage, and the organic semiconductor adlayers are found to physisorb with the consequence that the energy level alignment at the organic/LiF interface follows the integer charge transfer model's predictions.  相似文献   

10.
The addition of glass phase can control the grain boundary structure and hence the mechanical properties of tetragonal zirconia polycrystals (TZP). To reveal the effect of the glass dopant on the high-temperature deformation behavior of TZP, SiO2-doped TZP, (SiO2—Al2O3)-doped TZP, (SiO2—MgO)-doped TZP and undoped TZP were prepared and their grain boundary structure, chemical composition and chemical bonding state were investigated by high resolution electron microscopy ,HREM), energy dispersive X-ray spectroscopy ,EDS) and electron energy loss spectroscopy (EELS) using a field-emission-type transmission electron microscope (FE-TEM). It was found that no amorphous film was formed along the grain boundaries in any of the specimens examined, but amorphous pockets formed at multiple grain boundary junctions in three kinds of glass-doped specimens. In the glass-doped specimens, the segregation of yttrium, silicon and the added metal ions (Al31 or Mg21) was observed over a width of several nm across the grain boundaries. The addition of pure SiO2 much enhanced the ductility in TZP, although further addition of a small amount of Al2O3 or MgO to SiO2 phase resulted in a marked reduction in the tensile ductility of SiO2-doped TZP. EELS measurements and molecular orbital (MO) calculations using a cluster model revealed that the ductility of TZP was related to the bond overlap population (BOP) at the grain boundaries, which was influenced by the kinds of segregated dopants. That is, the presence of Si41 increases the BOP, strengthening the grain boundary bonding strength and thus preventing cavity formation, but Al31 and Mg21 decrease the BOP, enhancing the grain boundary cavitation and thus reducing the ductility. Furthermore, the dynamic behavior of SiO2 in TZP was observed using a TEM in situ heating technique, and the results supported the fact that that Si segregates along the grain boundaries.  相似文献   

11.
In lithium ion batteries (LIBs), the layered cathode materials of composition LiNi1−xyCoxMnyO2 are critical for achieving high energy densities. A high nickel content (>80%) provides an attractive balance between high energy density, long lifetime, and low cost. Consequently, Ni-rich layered oxides cathode active materials (CAMs) are in high demand, and the importance of LiNiO2 (LNO) as limiting case, is hence paramount. However, achieving perfect stoichiometry is a challenge resulting in various structural issues, which successively impact physicochemical properties and result in the capacity fade of LIBs. To better understand defect formation in LNO, the role of the Ni(OH)2 precursor morphology in the synthesis of LNO requires in-depth investigation. By employing aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction, a direct observation of defects in the Ni(OH)2 precursor preparedis reported and the ex situ structural evolution from the precursor to the end product is monitored. During synthesis, the layered Ni(OH)2 structure transforms to partially lithiated (non-layered) NiO and finally to layered LNO. The results suggest that the defects observed in commercially relevant CAMs originate to a large extent from the precursors, hence care must be taken in tuning the co-precipitation parameters to synthesize defect-free Ni-rich layered oxides CAMs.  相似文献   

12.
Metals, ceramics, polymers, and composites have been employed in joint arthroplasty with ever increasing success since the 1960s. New materials to repair or replace human skeletal joints (e.g. hip, knee, shoulder, ankle, fingers) are being introduced as materials scientists and engineers develop better understanding of the limitations of current joint replacement technologies. Advances in the processing and properties of all classes of materials are providing superior solutions for human health. However, as the average age of patients for joint replacement surgery decreases and the average lifespans of men and women increases worldwide, the demands upon the joint materials are growing. This article focuses solely on advances in metals, highlighting the current and emerging technologies in metals processing, metal surface treatment, and integration of metals into hybrid materials systems. The needed improvements in key properties such as wear, corrosion, and fatigue resistance are discussed in terms of the enhanced microstructures that can be achieved through advanced surface and bulk metal treatments. Finally, far reaching horizons in metals science that may further increase the effectiveness of total joint replacement solutions are outlined.  相似文献   

13.
Ni-rich layered oxides (NRLOs) and Li-rich layered oxides (LRLOs) have been considered as promising next-generation cathode materials for lithium ion batteries (LIBs) due to their high energy density, low cost, and environmental friendliness. However, these two layered oxides suffer from similar problems like capacity fading and different obstacles such as thermal runaway for NRLOs and voltage decay for LRLOs. Understanding the similarities and differences of their challenges and strategies at multiple scales plays a paramount role in the cathode development of advanced LIBs. Herein, we provide a comprehensive review of state-of-the-art progress made in NRLOs and LRLOs based on multi-scale insights into electrons/ions, crystals, particles, electrodes and cells. For NRLOs, issues like structure disorder, cracks, interfacial degradation and thermal runaway are elaborately discussed. Superexchange interaction and magnetic frustration are blamed for structure disorder while strains induced by universal structural collapse result in issues like cracks. For LRLOs, we present an overview of the origin of high capacity followed by local crystal structure, and the root of voltage hysteresis/decay, which are ascribed to reduced valence of transition metal ions, phase transformation, strains, and microstructure degradation. We then discuss failure mechanism in full cells with NRLO cathode and commercial challenges of LRLOs. Moreover, strategies to improve the performance of NRLOs and LRLOs from different scales such as ion-doping, microstructure designs, particle modifications, and electrode/electrolyte interface engineering are summarized. Dopants like Na, Mg and Zr, delicate gradient concentration design, coatings like spinel LiNi0.5Mn1.5O4 or Li3PO4 and novel electrolyte formulas are highly desired. Developing single crystals for NRLOs and new crystallographic structure or heterostructure for LRLOs are also emphasized. Finally, remaining challenges and perspectives are outlined for the development of NRLOs and LRLOs. This review offers fundamental understanding and future perspectives towards high-performance cathodes for next-generation LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号