首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Following the rejuvenation of 3D organic–inorganic hybrid perovskites, like CH3NH3PbI3, (quasi)‐2D Ruddlesden–Popper soft halide perovskites R2An?1PbnX3n+1 have recently become another focus in the optoelectronic and photovoltaic device community. Although quasi‐2D perovskites were first introduced to stabilize optoelectronic/photovoltaic devices against moisture, more interesting properties and device applications, such as solar cells, light‐emitting diodes, white‐light emitters, lasers, and polaritonic emission, have followed. While delicate engineering design has pushed the performance of various devices forward remarkably, understanding of the fundamental properties, especially the charge‐transfer process, electron–phonon interactions, and the growth mechanism in (quasi)‐2D halide perovskites, remains limited and even controversial. Here, after reviewing the current understanding and the nexus between optoelectronic/photovoltaic properties of 2D and 3D halide perovskites, the growth mechanisms, charge‐transfer processes, vibrational properties, and electron–phonon interactions of soft halide perovskites, mainly in quasi‐2D systems, are discussed. It is suggested that single‐crystal‐based studies are needed to deepen the understanding of the aforementioned fundamental properties, and will eventually contribute to device performance.  相似文献   

2.
Quasi-2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self-assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi-2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower-dimensional nanosheets (high-bandgap domains) to 3D nanocrystals (low-bandgap domains). High-quality quasi-2D perovskite (PEA)2(FA)3Pb4Br13 films are fabricated by solution engineering. Grazing-incidence wide-angle X-ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge-carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high-bandgap domains to the low-bandgap domains (<0.5 ps) compared to the randomly oriented films. High-performance light-emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2 is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi-2D films to achieve efficient energy transfer, which is a critical requirement for light-emitting devices.  相似文献   

3.
Mixed‐halide wide‐bandgap perovskites are key components for the development of high‐efficiency tandem structured devices. However, mixed‐halide perovskites usually suffer from phase‐impurity and high defect density issues, where the causes are still unclear. By using in situ photoluminescence (PL) spectroscopy, it is found that in methylammonium (MA+)‐based mixed‐halide perovskites, MAPb(I0.6Br0.4)3, the halide composition of the spin‐coated perovskite films is preferentially dominated by the bromide ions (Br?). Additional thermal energy is required to initiate the insertion of iodide ions (I?) to achieve the stoichiometric balance. Notably, by incorporating a small amount of formamidinium ions (FA+) in the precursor solution, it can effectively facilitate the I? coordination in the perovskite framework during the spin‐coating and improve the composition homogeneity of the initial small particles. The aggregation of these homogenous small particles is found to be essential to achieve uniform and high‐crystallinity perovskite film with high Br? content. As a result, high‐quality MA0.9FA0.1Pb(I0.6Br0.4)3 perovskite film with a bandgap (Eg) of 1.81 eV is achieved, along with an encouraging power‐conversion‐efficiency of 17.1% and open‐circuit voltage (Voc) of 1.21 V. This work also demonstrates the in situ PL can provide a direct observation of the dynamic of ion coordination during the perovskite crystallization.  相似文献   

4.
Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanoneedles (PZT–ZnOn) were successfully prepared on Pt/Cr/SiO2/Si substrates by the hybrid sol–gel method via spin-coating ZnOn suspension and lead zirconate titanate (PZT) sol. To control the orientation of the films, a PbTiO3 (PT) layer was first deposited as a seed layer. Effects of annealing method and ZnOn contents on the corresponding orientation and crystallization of PZT–ZnOn films were investigated by XRD and SEM. The results show that all the PZT–ZnOn composite thick films have pure perovskite structure and high-quality film surface. The dielectric and ferroelectric properties of the PZT–ZnOn films are close to the PZT films, and have a little decrease with the increasing of the ZnOn contents.  相似文献   

5.
Layered Ruddlesden–Popper (RP) phase (2D) halide perovskites have attracted tremendous attention due to the wide tunability on their optoelectronic properties and excellent robustness in photovoltaic devices. However, charge extraction/transport and ultimate power conversion efficiency (PCE) in 2D perovskite solar cells (PSCs) are still limited by the non‐eliminable quantum well effect. Here, a slow post‐annealing (SPA) process is proposed for BA2MA3Pb4I13 (n = 4) 2D PSCs by which a champion PCE of 17.26% is achieved with simultaneously enhanced open‐circuit voltage, short‐circuit current, and fill factor. Investigation with optical spectroscopy coupled with structural analyses indicates that enhanced crystal orientation and favorable alignment on the multiple perovskite phases (from the 2D phase near bottom to quasi‐3D phase near top regions) is obtained with SPA treatment, which promotes carrier transport/extraction and suppresses Shockley–Read–Hall charge recombination in the solar cell. As far as it is known, the reported PCE is so far the highest efficiency in RP phase 2D PSCs based on butylamine (BA) spacers (n = 4). The SPA‐processed devices exhibit a satisfactory stability with <4.5% degradation after 2000 h under N2 environment without encapsulation. The demonstrated process strategy offers a promising route to push forward the performance in 2D PSCs toward realistic photovoltaic applications.  相似文献   

6.
Organic A′-site ligand structure plays a crucial role in the crystal growth of 2D perovskites, but the underlying mechanism has not been adequately understood. This problem is tackled by studying the influence of two isomeric A′-site ligands, linear-shaped n-butylammonium (n-BA+) and branched iso-butylammonium (iso-BA+), on 2D perovskites from precursor to device, with a combination of in situ grazing-incidence wide-angle X-ray scattering and density functional theory. It is found that branched iso-BA+, due to the lower aggregation enthalpies, tends to form large-size clusters in the precursor solution, which can act as pre-nucleation sites to expedite the crystallization of vertically oriented 2D perovskites. Furthermore, iso-BA+ is less likely to be incorporated into the MAPbI3 lattice than n-BA+, suppressing the formation of unwanted multi-oriented perovskites. These findings well explain the better device performance of 2D perovskite solar cells based on iso-BA+ and elucidate the fundamental mechanism of ligand structural impact on 2D perovskite crystallization.  相似文献   

7.
Organic–inorganic metal halide perovskites (e.g., CH3NH3PbI3?x Clx ) emerge as a promising optoelectronic material. However, the Shockley–Queisser limit for the power conversion efficiency (PCE) of perovskite‐based photovoltaic devices is still not reached. Nonradiative recombination pathways may play a significant role and appear as photoluminescence (PL) inactive (or dark) areas on perovskite films. Although these observations are related to the presence of ions/defects, the underlying fundamental physics and detailed microscopic processes, concerning trap/defect status, ion migration, etc., still remain poorly understood. Here correlated wide‐field PL microscopy and impedance spectroscopy are utilized on perovskite films to in situ investigate both the spatial and the temporal evolution of these PL inactive areas under external electric fields. The formation of PL inactive domains is attributed to the migration and accumulation of iodide ions under external fields. Hence, we are able to characterize the kinetic processes and determine the drift velocities of these ions. In addition, it is shown that I2 vapor directly affects the PL quenching of a perovskite film, which provides evidence that the migration/segregation of iodide ions plays an important role in the PL quenching and consequently limits the PCE of organometal halide‐based perovskite photovoltaic devices.  相似文献   

8.
Two-dimensional (2D) Ruddlesden–Popper (RP) layered halide perovskite has attracted wide attentions due to its unique structure and excellent optoelectronic properties. With inserting organic cations, inorganic octahedrons are forced to extend in a certain direction, resulting in an asymmetric 2D perovskite crystal structure and causing spontaneous polarization. The pyroelectric effect resulted from spontaneous polarization exhibits a broad prospect in the application of optoelectronic devices. Herein, 2D RP polycrystalline perovskite (BA)2(MA)3Pb4I13 film with excellent crystal orientation is fabricated by hot-casting deposition, and a class of 2D hybrid perovskite photodetectors (PDs) with pyro-phototronic effect is proposed, achieving temperature and light detection with greatly improved performance by coupling multiple energies. Because of the pyro-phototronic effect, the current is ≈35 times to that of the photovoltaic effect current under 0 V bias. The responsivity and detectivity are 12.7 mA W−1 and 1.73 × 1011 Jones, and the on/off ratio can reach 3.97 × 103. Furthermore, the influences of bias voltage, light power density, and frequency on the pyro-phototronic effect of 2D RP polycrystalline perovskite PDs are explored. The coupling of spontaneous polarization and light facilitates photo-induced carrier dissociation and tunes the carrier transport process, making 2D RP perovskites a competitive candidate for next-generation photonic devices.  相似文献   

9.
2D perovskites stabilized by alternating cations in the interlayer space (ACI) represent a very new entry as highly efficient semiconductors for solar cells approaching 15% power conversion efficiency (PCE). However, further improvements will require understanding of the nature of the films, e.g., the thickness distribution and charge‐transfer characteristics of ACI quantum wells (QWs), which are currently unknown. Here, efficient control of the film quality of ACI 2D perovskite (GA)(MA)nPbnI3n+1 (〈n〉 = 3) QWs via incorporation of methylammonium chloride as an additive is demonstrated. The morphological and optoelectronic characterizations unambiguously demonstrate that the additive enables a larger grain size, a smoother surface, and a gradient distribution of QW thickness, which lead to enhanced photocurrent transport/extraction through efficient charge transfer between low‐n and high‐n QWs and suppressed nonradiative charge recombination. Therefore, the additive‐treated ACI perovskite film delivers a champion PCE of 18.48%, far higher than the pristine one (15.79%) due to significant improvements in open‐circuit voltage and fill factor. This PCE also stands as the highest value for all reported 2D perovskite solar cells based on the ACI, Ruddlesden–Popper, and Dion–Jacobson families. These findings establish the fundamental guidelines for the compositional control of 2D perovskites for efficient photovoltaics.  相似文献   

10.
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved.  相似文献   

11.
2D hybrid perovskites have shown great promise in the photodetection field, due to their intriguing attributes stemming from unique structural architectures. However, the great majority of detectors based on this 2D system possess a relatively low response speed (≈ms), making it extremely urgent to develop new candidates for superfast photodetection. Here, a new organic–inorganic hybrid perovskite, (PA)2(FA)Pb2I7 (EFA, where PA is n‐pentylaminium and FA is formamidine), which features the 2D Ruddlesden–Popper type perovskite framework that is composed of the corner‐sharing PbI6 octahedra is reported. Significantly, photodetectors fabricated on highly oriented thin films, which exhibit a perfect orientation parallel to 2D inorganic perovskite layers, exhibit a superfast response time up to ≈2.54 ns. To the best of the knowledge, this figure‐of‐merit catches up with that of the top‐ranking commercial materials, and sets a new record for 2D hybrid perovskite photodetectors. Moreover, extremely high photodetectivity (≈1.73 × 1014 Jones, under an incident power intensity of ≈46 µW cm?2), considerable switching ratios (>103), and low dark current (≈10 pA) are also achieved in the detector, indicating its great potential for high‐efficiency photodetection. These results shed light on the possibilities to explore new 2D candidates for assembling future high‐performance optoelectronic devices.  相似文献   

12.
Photodetectors are critical parts of an optical communication system for achieving efficient photoelectronic conversion of signals, and the response speed directly determines the bandwidth of the whole system. Metal halide perovskites, an emerging class of low‐cost solution‐processed semiconductors, exhibiting strong optical absorption, low trap states, and high carrier mobility, are widely investigated in photodetection applications. Herein, through optimizing the device engineering and film quality, high‐performance photodetectors based on all‐inorganic cesium lead halide perovskite (CsPbIxBr3–x), which simultaneously possess high sensitivity and fast response, are demonstrated. The optimized devices processed from CsPbIBr2 perovskite show a practically measured detectable limit of about 21.5 pW cm?2 and a fast response time of 20 ns, which are both among the highest reported device performance of perovskite‐based photodetectors. Moreover, the photodetectors exhibit outstanding long‐term environmental stability, with negligible degradation of the photoresponse property after 2000 h under ambient conditions. In addition, the resulting perovskite photodetector is successfully integrated into an optical communication system and its applications as an optical signal receiver on transmitting text and audio signals is demonstrated. The results suggest that all‐inorganic metal halide perovskite‐based photodetectors have great application potential for optical communication.  相似文献   

13.
Metal‐halide perovskites have become appealing materials for optoelectronic devices. While the fast advancing stretchable/wearable devices require stability, flexibility and scalability, current perovskites suffer from ambient‐environmental instability and incompatible mechanical properties. Recently perovskite?polymer composites have shown improved in‐air stability with the protection of polymers. However, their stability remains unsatisfactory in water or high‐humidity environment. These methods also suffer from limited processability with low yield (2D film or beads) and high fabrication cost (high temperature, air/moisture‐free conditions), thereby limiting their device integration and broader applications. Herein, by combining facile photo‐polymerization with room‐temperature in‐situ perovskite reprecipitation at low energy cost, a one‐step scalable method is developed to produce freestanding highly‐stable luminescent organogels, within which CH3NH3PbBr3 nanoparticles are homogeneously distributed. The perovskite‐organogels present a record‐high stability at different pH and temperatures, maintaining their high quantum yields for > 110 days immersing in water. This paradigm is universally applicable to broad choices of polymers, hence casting these emerging luminescent materials to a wide range of mechanical properties tunable from rigid to elastic. With intrinsically ultra‐stretchable photoluminescent organogels, flexible phosphorous layers were demonstrated with > 950% elongation. Rigid perovskite gels, on the other hand, permitted the deployment of 3D‐printing technology to fabricate arbitrary 2D/3D luminescent architectures.  相似文献   

14.
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1?x?yMAxCsyPbI3?zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility.  相似文献   

15.
2D Ruddlesden-Popper perovskites (PVKs) have recently shown overwhelming potential in various optoelectronic devices on account of enhanced stability to their 3D counterparts. So far, regulating the phase distribution and orientation of 2D perovskite thin films remains challenging to achieve efficient charge transport. This work elucidates the balance struck between sufficient gradient sedimentation of perovskite colloids and less formation of small-n phases, which results in the layered alignment of phase compositions and thus in enhanced photoresponse. The solvent engineering strategy, together with the introduction of poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) and PC71BM layer jointly contribute to outstanding self-powered performance of indium tin oxide/PEDOT:PSS/PVK/PC71BM/Ag device, with a photocurrent of 18.4 µA and an on/off ratio up to 2800. The as-fabricated photodetector exhibits high sensitivity characteristics with the peak responsivity of 0.22 A W−1 and the detectivity up to 1.3 × 1012 Jones detected at UV-A region, outperforming most reported perovskite-based UV photodetectors and maintaining high stability over a wide spectrum ranging from UV to visible region. This discovery supplies deep insights into the control of ordered phases and crystallinity in quasi-2D perovskite films for high-performance optoelectronic devices.  相似文献   

16.
Organometal halide perovskites are new light‐harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low‐temperature process capability. However, the preparation of high‐quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor–solution method is developed to achieve uniform and pinhole‐free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as‐prepared high‐quality perovskite thin films, high‐performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W?1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin‐film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high‐quality perovskite thin films opens up a new avenue to develop high‐performance flexible optoelectronic devices.  相似文献   

17.
Surface defects-mediated nonradiative recombination plays a critical role in the performance and stability of perovskite solar cells (PSCs) and surface post-treatment is widely used for efficient PSCs. However, the commonly used surface passivation strategies are one-off and the passivation defect ability is limited, which can only solve part of the defects in the topmost surface area. Here, a secondary anti-solvent strategy is proposed to further reduce surface defects based on conventional surface passivation for the first time. Based on this, the crystallization quality of 2D Dion–Jacobson perovskite is enhanced and the surface defects density is further reduced by nearly two orders. In addition, a gradient structure of perovskite with n = 2 phases located at the top of the film and 3D-like phases located at the bottom of the film can also be obtained. The modulated perovskite film boosts the efficiency of 2D perovskites (n = 5) up to 19.55%. This strategy is also very useful in other anti-solvent processed perovskite dipping systems, which paves a promising avenue for minimizing surface defects toward highly efficient perovskite devices.  相似文献   

18.
Compared with organic–inorganic hybrid halide perovskites (OIHPs), inorganic cesium lead halide perovskites (CsPbX3) possess superior intrinsic stability for high temperatures and are considered one of the most attractive research hotspots in the perovskite photovoltaic (PV) field in the past several years. The PCE of CsPbX3 inorganic perovskite solar cells (IPSCs) has increased from 2.9% in 2015 to more than 20% with excellent stability. There are still many on-going studies on the properties of perovskite materials and their applications in PV technology, thereby needing a thorough understanding. Here, the progress of inorganic perovskites is systematically introduced, including the fundamental properties of CsPbX3 materials and CsPbX3-based PV devices. The origins of stability and instability of CsPbX3 and defects in CsPbX3 are discussed. CsPbI3-, CsPbI2Br-, CsPbIBr2- and CsPbBr3-based PV devices and performance are comprehensively reviewed. The stabilization methods and mechanism for the photoactive phases of inorganic perovskites with low bandgap are emphasized. Reported strategies to boost the performance of CsPbX3-based IPSCs are summarized. In the end, the potential of inorganic perovskites is evaluated, which opens up new prospects for the commercialization of IPSCs.  相似文献   

19.
The development of narrow-bandgap (Eg ≈ 1.2 eV) mixed tin–lead (Sn–Pb) halide perovskites enables all-perovskite tandem solar cells. Whereas pure-lead halide perovskite solar cells (PSCs) have advanced simultaneously in efficiency and stability, achieving this crucial combination remains a challenge in Sn–Pb PSCs. Here, Sn–Pb perovskite grains are anchored with ultrathin layered perovskites to overcome the efficiency-stability tradeoff. Defect passivation is achieved both on the perovskite film surface and at grain boundaries, an approach implemented by directly introducing phenethylammonium ligands in the antisolvent. This improves device operational stability and also avoids the excess formation of layered perovskites that would otherwise hinder charge transport. Sn–Pb PSCs with fill factors of 79% and a certified power conversion efficiency (PCE) of 18.95% are reported—among the highest for Sn–Pb PSCs. Using this approach, a 200-fold enhancement in device operating lifetime is achieved relative to the nonpassivated Sn–Pb PSCs under full AM1.5G illumination, and a 200 h diurnal operating time without efficiency drop is achieved under filtered AM1.5G illumination.  相似文献   

20.
Lead halide perovskites have emerged as promising semiconducting materials for different applications owing to their superior optoelectronic properties. Although the community holds different views toward the toxic lead in these high‐performance perovskites, it is certainly preferred to replace lead with nontoxic, or at least less‐toxic, elements while maintaining the superior properties. Here, the design rules for lead‐free perovskite materials with structural dimensions from 3D to 0D are presented. Recent progress in lead‐free halide perovskites is reviewed, and the relationships between the structures and fundamental properties are summarized, including optical, electric, and magnetic‐related properties. 3D perovskites, especially A2B+B3+X6‐type double perovskites, demonstrate very promising optoelectronic prospects, while low‐dimensional perovskites show rich structural diversity, resulting in abundant properties for optical, electric, magnetic, and multifunctional applications. Furthermore, based on these structure–property relationships, strategies for multifunctional perovskite design are proposed. The challenges and future directions of lead‐free perovskite applications are also highlighted, with emphasis on materials development and device fabrication. The research on lead‐free halide perovskites at Linköping University has benefited from inspirational discussions with Prof. Olle Inganäs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号