首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene has demonstrated great potential in new‐generation electronic applications due to its unique electronic properties such as large carrier Fermi velocity, ultrahigh carrier mobility, and high material stability. Interestingly, the electronic structures can be further engineered in multilayer graphene by the introduction of a twist angle between different layers to create van Hove singularities (vHSs) at adjustable binding energy. In this work, using angle‐resolved photoemission spectroscopy with sub‐micrometer spatial resolution, the band structures and their evolution are systematically studied with twist angle in bilayer and trilayer graphene sheets. A doping effect is directly observed in graphene multilayer system as well as vHSs in bilayer graphene over a wide range of twist angles (from 5° to 31°) with wide tunable energy range over 2 eV. In addition, the formation of multiple vHSs (at different binding energies) is also observed in trilayer graphene. The large tuning range of vHS binding energy in twisted multilayer graphene provides a promising material base for optoelectrical applications with broadband wavelength selectivity from the infrared to the ultraviolet regime, as demonstrated by an example application of wavelength selective photodetector.  相似文献   

2.
The Fermi energy is shown to be pinned near a van Hove singularity for an extended doping range in the one-band and three-band Hubbard models as a consequence of filling dependent band renormalizations.  相似文献   

3.
Twisted bilayer graphene exhibits several angle-dependent properties due to the emergence of the van Hove Singularities in its density of states. Among them, twist-angle-dependent optical absorption has gained a lot of attention due to its presence in the visible spectral region. However, observation of such absorption is experimentally tricky due to large transmittance. In this study, we use highly decoupled twisted multilayer graphene to observe such absorption in the visible region using a simple spectrometer. A large number of twisted graphene layers in the system enable observation of such absorption evident in the visible region; the absorption band position correlates with the twist angle measured using selective area electron diffraction pattern as well as predictions from theory. While the Raman spectra were akin to those of the decoupled graphene system, at specific twist angle of \({\sim }13^{\circ }\), the spectrum contained clear signatures of G-band enhancement.  相似文献   

4.
Havener RW  Zhuang H  Brown L  Hennig RG  Park J 《Nano letters》2012,12(6):3162-3167
Few-layer graphene is a prototypical layered material, whose properties are determined by the relative orientations and interactions between layers. Exciting electrical and optical phenomena have been observed for the special case of Bernal-stacked few-layer graphene, but structure-property correlations in graphene which deviates from this structure are not well understood. Here, we combine two direct imaging techniques, dark-field transmission electron microscopy (DF-TEM) and widefield Raman imaging, to establish a robust, one-to-one correlation between twist angle and Raman intensity in twisted bilayer graphene (tBLG). The Raman G band intensity is strongly enhanced due to a previously unreported singularity in the joint density of states of tBLG, whose energy is exclusively a function of twist angle and whose optical transition strength is governed by interlayer interactions, enabling direct optical imaging of these parameters. Furthermore, our findings suggest future potential for novel optical and optoelectronic tBLG devices with angle-dependent, tunable characteristics.  相似文献   

5.
Bilayer or few‐layer 2D materials showing novel electrical properties in electronic device applications have aroused increasing interest in recent years. Obtaining a comprehensive understanding of interlayer contact conductance still remains a challenge, but is significant for improving the performance of bilayer or few‐layer 2D electronic devices. Here, conductive atomic force microscope (C‐AFM) experiments are reported to explore the interlayer contact conductance between bilayer graphene (BLG) with various twisted stacking structures fabricated by the chemical vapor deposition (CVD) method. The current maps show that the interlayer contact conductance between BLG strongly depends on the twist angle. The interlayer contact conductance of 0° AB‐stacking bilayer graphene (AB‐BLG) is ≈4 times as large as that of 30° twisted bilayer graphene (t‐BLG), which indicates that the twist angle–dependent interlayer contact conductance originates from the coupling–decoupling transitions. Moreover, the moiré superlattice‐level current images of t‐BLG show modulations of local interlayer contact conductance. Density functional theory calculations together with a theoretical model reproduce the C‐AFM current map and show that the modulation is mainly attributed to the overall contribution of local interfacial carrier density and tunneling barrier.  相似文献   

6.
We investigate the role of electron-hole correlations in the absorption of free-standing monolayer and bilayer graphene using optical transmission spectroscopy from 1.5 to 5.5 eV. Line shape analysis demonstrates that the ultraviolet region is dominated by an asymmetric Fano resonance. We attribute this to an excitonic resonance that forms near the van Hove singularity at the saddle point of the band structure and couples to the Dirac continuum. The Fano model quantitatively describes the experimental data all the way down to the infrared. In contrast, the common noninteracting particle picture cannot describe our data. These results suggest a profound connection between the absorption properties and the topology of the graphene band structure.  相似文献   

7.
In situ angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) have been used to study the electronic structure of Pb thin films grown on a Si(111) substrates. The experiments reveal that the electronic structure near the Fermi energy is dominated by a set of m-shaped subbands because of strong quantum confinement in the films, and the tops of the m-shaped subbands form an intriguing ring-like Van Hove singularity. Combined with theoretical calculations, we show that it is the Van Hove singularity that leads to an extremely high density of states near the Fermi energy and the recently reported strong oscillations (with a period of two monolayers) in various properties of Pb films.  相似文献   

8.
Mao Y  Zhong J 《Nanotechnology》2008,19(20):205708
First-principles spin-polarized calculations have been conducted to investigate the structural, electronic and magnetic properties of 3d transition metal Mn doping into two typical sites in the upper layer of bilayer graphene with the AB Bernal structure. One of the doping sites is above the center of a carbon hexagon of the lower graphene layer (called the H site) and the other is directly on top of a carbon atom of the lower graphene layer (called the T site). We found that Mn doping enlarges the interlayer distance in bilayer graphene. Charge density distribution indicates that the region between the upper and lower graphene layer has apparent covalent-bonding characters due to the Mn doping. In the spin-polarized band structure of H?site doping, the π and π(*) bands separate from each other at the Dirac point both in majority spin and minority spin. In the band structure of T site doping, the Fermi level is located above the Dirac point and moves to the conduction bands in majority spin and minority spin, making the bilayer graphene n doped. A high spin polarization of 95% is achieved due to the H site doping. The local moment of Mn for H and T site doping is reduced to 1.76?μ(B) and 1.88?μ(B), respectively, which are smaller than the value (5?μ(B)) in the free state.  相似文献   

9.
Heo J  Bockrath M 《Nano letters》2005,5(5):853-857
An atomic force microscope was used to locally perturb and detect the charge density in carbon nanotubes. Changing the tip voltage varied the Fermi level in the nanotube. The local charge density increased abruptly whenever the Fermi level was swept through a van Hove singularity in the density of states, thereby coupling the cantilever's mechanical oscillations to the nanotube's local electronic properties. By using our technique to measure the local band gap of an intratube quantum-well structure, created by a nonuniform uniaxial strain, we have estimated the nanotube chiral angle. Our technique does not require attached electrodes or a specialized substrate, yielding a unique high-resolution spectroscopic tool that facilitates the comparison between local electronic structure of nanomaterials and further transport, optical, or sensing experiments.  相似文献   

10.
Yu WJ  Liao L  Chae SH  Lee YH  Duan X 《Nano letters》2011,11(11):4759-4763
The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.  相似文献   

11.
Abstract

We study boron-doped carbon nanotubes by first-principles methods based on the density functional theory. To discuss the possibility of superconductivity, we calculate the electronic band structure and the density of states (DOS) of boron-doped (10,0) nanotubes by changing the boron density. It is found that the Fermi level density of states D(?F) increases upon lowering the boron density. This can be understood in terms of the rigid band picture where the one-dimensional van Hove singularity lies at the edge of the valence band in the DOS of the pristine nanotube. The effect of three-dimensionality is also considered by performing the calculations for bundled (10,0) nanotubes and boron-doped double-walled carbon nanotubes (10,0)@(19,0). From the calculation of the bundled nanotubes, it is found that interwall dispersion is sufficiently large to broaden the peaks of the van Hove singularity in the DOS. Thus, to achieve the high D(?F) using the bundle of nanotubes with single chirality, we should take into account the distance from each nanotube. In the case of double-walled carbon nanotubes, we find that the holes introduced to the inner tube by boron doping spread also on the outer tube, while the band structure of each tube remains almost unchanged.  相似文献   

12.
Recent theoretical and (photoemission) experimental results greatly strengthen the case for the saddle point van Hove singularity (vHs) playing an important role in the cuprate superconductors. The vHs signals a change in the topology of the Fermi surface-usually from electronlike to holelike orbits. Thus, near the vHs, there can be tunneling between the different Fermi surface sections. This orbital switching bears some resemblance to magnetic breakdown, but is a distinct phenomenon. In the presence of finite orbit switching, the electronic orbits can form a quantum coherent network.  相似文献   

13.
Brown L  Hovden R  Huang P  Wojcik M  Muller DA  Park J 《Nano letters》2012,12(3):1609-1615
The electronic, optical, and mechanical properties of bilayer and trilayer graphene vary with their structure, including the stacking order and relative twist, providing novel ways to realize useful characteristics not available to single layer graphene. However, developing controlled growth of bilayer and trilayer graphene requires efficient large-scale characterization of multilayer graphene structures. Here, we use dark-field transmission electron microscopy for rapid and accurate determination of key structural parameters (twist angle, stacking order, and interlayer spacing) of few-layer CVD graphene. We image the long-range atomic registry for oriented bilayer and trilayer graphene, find that it conforms exclusively to either Bernal or rhombohedral stacking, and determine their relative abundances. In contrast, our data on twisted multilayers suggest the absence of such long-range atomic registry. The atomic registry and its absence are consistent with the two different strain-induced deformations we observe; by tilting the samples to break mirror symmetry, we find a high density of twinned domains in oriented multilayer graphene, where multiple domains of two different stacking configurations coexist, connected by discrete twin boundaries. In contrast, individual layers in twisted regions continuously stretch and shear independently, forming elaborate Moiré patterns. These results, and the twist angle distribution in our CVD graphene, can be understood in terms of an angle-dependent interlayer potential model.  相似文献   

14.
We review the main results of the van Hove scenario applied to superconducting cuprates. It is based on the assumption that in these materials, the Fermi level lies near a singularity in the density of states (DOS). This hypothesis has recently been confirmed experimentally. We show that this model explains many properties of the high-T c superconductors. We show that an anaogous model with a peak in the DOS may also be applied to the superconducting doped fullerenes. A general feature of the model is a very short coherence length.  相似文献   

15.
A Green's function decoupling method is shown to yield quasiparticle bands for the 2D Hubbard model in excellent agreement with the Monte Carlo results of Bulut et al. The same approach gives d-wave superconductivity with Tc in the range 10–100K for a band-width of 4eV, on-site interaction U = 2eV and the Fermi level close to a van Hove singularity.We thank Dr. N. Bulut for communicating his results before publication.  相似文献   

16.
17.
Within the framework of the BCS theory, the gap-to-TC ratioR=2‡ 0/kTc is evaluated numerically (‡0 is the energy gap atT = 0 andT> c is the critical temperature) for a superconductor with a van Hove singularity (vHs) in the density of states as a function of the shifts (δ) of the Fermi level with respect to the vHs. It is found thatR varies asymmetrically with δ and that the variations are strong near δ = 0. Our numerical calculation shows that the largest R’s occur at certain values of δ⊋0.  相似文献   

18.
We recall the van Hove scenario (J. Labbe and J. Bok, Europhys. Lett. 3, 1225 (1987); J. Bouvier and J. Bok, in The Gap Symmetry and Fluctuations in HTSC, J. Bok et al., eds. (Plenum, New York, 1998)) developed since 1987. It explains high T c, anomalous isotope effect, gap anisotropy etc. We apply this scenario to the superconductive surface layer, obtained by field effect on CaCuO2 by J. H. Schön et al. Preprint (private communication), to be published). We show that the variation of resistivity and Hall effect with temperature in the normal state can be understood by the presence of a van Hove singularity (v.H.s.) in the band structure. The doping by field effect changes the distance between the Fermi level and the v.H.s.  相似文献   

19.
Bilayer graphene with a twist angle θ between the layers generates a superlattice structure known as a Moiré pattern. This superlattice provides a θ-dependent q wavevector that activates phonons in the interior of the Brillouin zone. Here we show that this superlattice-induced Raman scattering can be used to probe the phonon dispersion in twisted bilayer graphene (tBLG). The effect reported here is different from the widely studied double-resonance in graphene-related materials in many aspects, and despite the absence of stacking order in tBLG, layer breathing vibrations (namely ZO’ phonons) are observed.   相似文献   

20.
There is growing evidence that the p-wave superconductivity of Sr2RuO4 occurs primarily in the planar -band. Thus the minimum model for both cuprates and ruthenates is a single active band with onsite Coulomb interactions. Recent renormalization group analysis shows that such a model can show singlet d-wave or triplet p-wave pairing. The energy of the van Hove singularity in the band and the shape of the Fermi surface are the decisive factors at weak to moderate interaction strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号