首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrospun nanofibers have attracted tremendous attention because of their similar structure with extracellular matrix. In this work, the polydopamine (PDA) coating layer was first applied to modify hydroxyapatite (HA) nanoparticles and obtain functional HA@PDA nanoparticles. Subsequently, the polylactic acid (PLA)/HA@PDA composite nanofibers were prepared via electrospinning. The hydrophilicity and water absorption of PLA/HA@PDA composite nanofibers were larger than those of PLA and PLA/HA composite nanofibers. The thermal stability, static and dynamic mechanical properties of PLA/HA@PDA composite nanofibers significantly increased because the PDA coating layer on the surface of the HA nanoparticles acted like a glue-like transition layer, which led to an increase in interfacial adhesion between HA@PDA nanoparticles and the PLA matrix. The attachment and viability of mouse embryonic osteoblast cells (MC3T3-E1) cultured on the PLA/HA@PDA composite nanofibers were significantly increased compared with those cultured on the PLA and PLA/HA composite nanofibers. These results suggested that the PLA/HA@PDA composite nanofibers have superior mechanical and biological properties, which makes it potentially useful for tissue engineering scaffolds.  相似文献   

2.
A straightforward, fast, and versatile technique is developed to fabricate nanofibrous scaffold with excellent hydrophilicity, mechanical properties, and biocompatibility for tissue engineering. The thermoplastic polyurethane (TPU) nanofiber is fabricated by utilizing electrospinning, and then its surface is modified through simply immersing it into cellulose nanofibrils (CNF) dispersion and subjecting to ultrasonication. The results show that the CNF particles are successfully absorbed on the surface of TPU nanofiber. By introducing CNF particles on the surface of TPU nanofiber, the hydrophilicity, mechanical properties of fabricated CNF‐absorbed TPU scaffold are significantly increased. Additionally, the adhesion and proliferation of human umbilical vein endothelial cells cultured on CNF‐absorbed TPU scaffold are prominently enhanced in comparison with those of cultured on TPU scaffold. These findings suggest that the ultrasound‐assisted technique opens up a new way to simply and effectively modify the surface of various scaffolds and the modified scaffold could be shown a great potential in tissue engineering.  相似文献   

3.
以碳纤维(CF)作为增强材料,将CF有序排列于聚乳酸羟基乙酸(PLGA)多孔结构中,制备性能优良的CF/PLGA复合支架,并对其力学性能及细胞生物学性能进行表征.对增强体CF进行有序排列以提高支架的力学性能,扫描电子显微镜(SEM)观察CF/PLGA复合支架的微观形貌,可以看出CF在聚合物基体内部是呈有序结构并且二者结合情况良好.为了提高CF的生物相容性,利用对氨基苯甲酸对CF进行表面修饰,细胞生长在支架上的SEM照片反映了成纤维细胞对PLGA及CF/PLGA复合支架的黏附性能良好;通过细胞毒性测试,发现表面修饰的CF对细胞的生长没有负面作用,且在一定程度上促进了细胞的生长.研究结果表明,制备的CF/PLGA支架具有良好的力学性能和生物相容性,在骨组织工程支架的应用中具有一定的潜力.  相似文献   

4.
Electrospun nanofibers have large surface area, high porosity, and controllable orientation while conventional microfibers have appropriate mechanical properties such as stiffness, strength, and elasticity. Therefore, the combination of nanofibers and microfibers can provide building elements to engineer biomimetic scaffolds for tissue engineering. In this study, a core–shell structured fibrous structure with controllable surface topography is created by electrospinning polycaprolactone (PCL) nanofibers onto polyglycolic acid (PGA) microfibers. The surface morphology, surface wettability, and mechanical properties of the resultant core–shell structure are characterized. FE‐SEM images reveal that the orientation of PCL nanofibers on the yarn surface can be tuned by a fiber collector and rotating disks. Benefiting from the introduction of a shell of aligned PCL nanofibers on the core of PGA yarn, the uniaxially aligned PCL nanofiber–covered yarns (A‐PCLs) exhibit higher hydrophilicity, porosity, and mechanical properties than the core PGA yarns. Moreover, A‐PCLs promote the adhesion and proliferation of BALB/3T3 (mouse embryonic fibroblast cell line), and guide cell growth along the biotopographic cues of the PCL nanofibers with controllable alignment. The developed core–shell yarn having both the desired surface topography of PCL nanofibers and mechanical properties of PGA microfibers demonstrates great potential in constructing various tissue scaffolds.  相似文献   

5.
10,12-Pentacosadiynoic acid (PCDA) monomers were mixed with polyurethane (PU) or poly(ethylene oxide) (PEO) and the mixtures were electrospun to obtain composite nanofibers that were then photopolymerized via ultraviolet radiation, resulting polydiacetylene (PDA) in the nanofibers. The PDA demonstrated color-changing properties in the presence of Escherichia coli, which exhibited potential for developing flexible colorimetric biosensors for medical textiles. Phase separation was found in the PEO–PDA fibers, resulting in amorphous PEO accumulation at the fiber surface. In contrast, the PU–PDA fibers demonstrated a homogeneous microstructure throughout the fibers. Tensile test results suggested a molecular orientation in the PU–PDA fibers that significantly improved the mechanical properties of the fibers. The presence of PDA in the matrix polymer reduced the overall strength and breaking elongation of both composite nanofibers in comparison to 100% PEO and PU fibers. A single PU–PDA fiber showed significantly higher stiffness and modulus than a single PEO–PDA fiber. Force–distance curve analysis suggested that the PU–PDA fibers exhibited an elastic deformation. In a comparison, the PEO–PDA fibers were brittle and showed low modulus. The results of structural and mechanical properties suggest that the PU–PDA nanofibers are a promising composite for developing nonadherent, durable, and flexible colorimetric biosensors used in medical textiles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47877.  相似文献   

6.
Electrospun nanofibers are promising bone tissue scaffolds that support bone healing due to the body’s structural similarity to the extracellular matrix (ECM). However, the insufficient mechanical properties often limit their potential in bone tissue regeneration. Cross-linking agents that chemically interconnect as-spun electrospun nanofibers are a simple but effective strategy for improving electrospun nanofibers’ mechanical, biological, and degradation properties. To improve the mechanical characteristic of the nanofibrous bone scaffolds, two of the most common types of cross-linking agents are used to chemically crosslink electrospun nanofibers: synthetic and natural. Glutaraldehyde (GTA) is a typical synthetic agent for electrospun nanofibers, while genipin (GP) is a natural cross-linking agent isolated from gardenia fruit extracts. GP has gradually gained attention since GP has superior biocompatibility to synthetic ones. In recent studies, much more progress has been made in utilizing crosslinking strategies, including citric acid (CA), a natural cross-linking agent. This review summarizes both cross-linking agents commonly used to improve electrospun-based scaffolds in bone tissue engineering, explains recent progress, and attempts to expand the potential of this straightforward method for electrospinning-based bone tissue engineering.  相似文献   

7.
The main purpose of tissue engineering is the preparation of fibrous scaffolds with similar structural and biochemical cues to the extracellular matrix in order to provide a substrate to support the cells. Controlled release of bioactive agents such as growth factors from the fibrous scaffolds improves cell behavior on the scaffolds and accelerates tissue regeneration. In this study, nanofibrous scaffolds were fabricated from biocompatible and biodegradable poly(lactic‐co‐glycolic acid) through the electrospinning technique. Nanofibers with a core–sheath structure encapsulating bovine serum albumin (BSA) as a model protein for hydrophilic bioactive agents were prepared through emulsion electrospinning. The morphology of the nanofibers was evaluated by field‐emission scanning electron microscopy and the core–sheath structure of the emulsion electrospun nanofibers was observed by transmission electron microscopy. The results of the mechanical properties and X‐ray diffraction are reported. The scaffolds demonstrated a sustained release profile of BSA. Biocompatibility of the scaffolds was evaluated using the MTT (3(4,5‐ dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay for NIH‐3T3 fibroblast cells. The results indicated desirable biocompatibility of the scaffolds with the capability of encapsulation and controlled release of the protein, which can serve as tissue engineering scaffolds. © 2013 Society of Chemical Industry  相似文献   

8.
Laser melt electrospinning is a novel technology to fabricate scaffolds in the tissue engineering applications. The melt electrospinning is much safer than the conventional solution electrospinning due to without solvent effect. In this study, thermoplastic polyurethane (TPU) micro/nanofibers were successfully prepared by using this method. The effects of laser current and applied voltage on the fibers morphologies were investigated by scanning electron microscopy. The thermal behaviors and crystallization conditions of the TPU under different states were demonstrated by differential scanning calorimetry and X‐ray diffraction analysis. The mechanical property and the specific surface area of the TPU fibers membranes were also studied. All the analysis results showed that the effects of laser current and applied voltage on the average fiber diameter were complicated, the average fiber diameter ranging from 1.70 to 2.53 µm; the TPU is not an easily crystallized material; the electrospun fibers exhibited an amorphous phase; the average elongation at break laser of the electrospun TPU fiber membranes is about 134%; the average tensile strength is about 1.02 MPa and the specific surface area of the electrospun TPU fiber membrane is about 199 m2/g. POLYM. ENG. SCI., 54:1412–1417, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
To engineer tissue restoration, it is necessary to provide a bioactive, mechanically robust scaffold. Electrospun poly(ε‐caprolactone) (PCL) nanofiber is a promising biomaterial candidate with excellent mechanical properties, but PCL scaffolds are inert and lack natural cell recognition sites. To overcome this problem we investigated the incorporation of Antheraea pernyi silk fibroin (ASF) containing inherent RGD tripeptides with PCL in electrospinning process. The mixing ratios showed remarkable impact on the properties of hybrid nanofibers. Increasing PCL content significantly enhanced the mechanical properties of nanofibers. In particular, the mechanical properties were remarkably enhanced when PCL content increased from 50 wt% to 70 wt%. Moreover, the biological assays based on endothelial cells showed promoted cell viability when ASF content reached to 30 wt%. The data demonstrated that the nanofiber containing 70% of PCL and 30% of ASF achieved the most balanced performances for integrating the mechanical properties of PCL and the bioactivity of ASF. Furthermore, biomimetic alignment of 70PCL/30ASF nanofibers was achieved, which could support PC12 neuron‐like cell growth and guide neurite outgrowth, providing a potentially useful option for the engineering of oriented tissues. The results show that the PCL/ASF hybrid nanofibers can be considered as a promising candidate for tissue engineering scaffolds. POLYM. ENG. SCI., 57:206–213, 2017. © 2016 Society of Plastics Engineers  相似文献   

10.
Novel three-dimensional (3-D) nano-/microfibrous poly(lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by hybrid electrospinning, involving a combination of solution electrospinning and melt electrospinning. The scaffolds consisted of a randomly oriented structure of PLGA microfibers (average fiber diameter = 28 μm) and PLGA nanofibers (average fiber diameter = 530 nm). From mercury porosimetry, the PLGA nano-/microfiber (10/90) scaffolds were found to have similar pore parameters to the PLGA microfiber scaffolds. PLGA nano-/microfibrous scaffolds were examined and compared with the PLGA microfiber scaffolds in terms of the attachment, spreading and infiltration of normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF). The cell attachment and spreading of both cell types were several times higher in the nano-/microfiber composite scaffolds than in the microfibrous scaffolds without nanofibers. This shows that the presence of nanofibers enhanced the attachment and spreading of the cells on the nano-/microfiber composite scaffolds. Moreover, the nanofibers helped the cells infiltrate easily into the scaffolds. Overall, this novel nano-/microfiber structures has great potential for the 3-D organization and guidance of cells provided for tissue engineering.  相似文献   

11.
One of the major problems of nanofiber scaffold or other devices like cardiovascular or blood‐contacting medical devices is their weak mechanical properties and the lack of hemocompatibility of their surfaces. In this study, halloysite nanotubes (HNTs) and carbon nanotubes (CNTs) were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) nanofibers and the mechanical property and hemocompatibility of both types of composite nanofibers with different doping levels were thoroughly investigated. The morphology and internal distribution of the doped nanotubes within the nanofibers were characterized using scanning electron microscopy and transmission electron microscopy. Mechanical properties of the electrospun nanofibers were tested using a material testing machine. The hemocompatibility of the composite nanofibers was examined through hemolytic and anticoagulant assay, respectively. We show that the doped HNTs or CNTs are distributed in the nanofibers with a coaxial manner and the incorporation of HNTs or CNTs does not significantly change the morphology of the PLGA nanofibers. Importantly, the incorporation of HNTs or CNTs within PLGA nanofibers significantly improves the mechanical property of PLGA nanofibers, and PLGA nanofibers with or without doping of the HNTs and CNTs display good anticoagulant property and negligible hemolytic effect to human red blood cells. With the enhanced mechanical property, great hemocompatibility, and previously demonstrated biocompatibility of both HNTs‐ and CNTs‐doped composite PLGA nanofibers, these composite nanofibers may be used as therapeutic artificial tissue/organ substitutes for tissue engineering applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The aim of this study was to investigate coaxial electrospun poly(l-lactide-co-?-caprolactone) [PLLACL] nanofibers for the application in nerve tissue engineering. The hypothesis was that the nanofibrous mats fabricated by coaxial electrospun PLLACL could be effective scaffolds for releasing proteins, such as Bovine Serum Albumin (BSA) or/and Nerve Growth Factor (NGF), in a sustained manner. To test the hypothesis, the coaxial electrospun nanofibers with PLLACL as the shell and BSA/NGF as the core were characterized. Morphologies and mechanical properties of nanofibrous mats were examined. BSA released behavior was studied. The results demonstrated that BSA could be sustainedly released from coaxial electrospun PLLACL nanofibers, however, BSA released from mix electrospun nanofibers present the burst release behavior. Bioactivity of released NGF from coaxial electrospun nanofibers was verified by testing the differentiation of rat pheochromocytoma cells (PC12).  相似文献   

13.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

14.
Cartilage tissue engineering is an emerging therapeutic strategy that aims to regenerate damaged cartilage caused by disease, trauma, ageing or developmental disorder. Since cartilage lacks regenerative capabilities, it is essential to develop approaches that deliver the appropriate cells, biomaterials and signalling factors to the defect site. Materials and fabrication technologies are therefore critically important for cartilage tissue engineering in designing temporary, artificial extracellular matrices (scaffolds), which support 3D cartilage formation. Hence, this work aimed to investigate the use of poly(3‐hydroxybutyrate)/microfibrillated bacterial cellulose (P(3HB)/MFC) composites as 3D‐scaffolds for potential application in cartilage tissue engineering. The compression moulding/particulate leaching technique employed in the study resulted in good dispersion and a strong adhesion between the MFC and the P(3HB) matrix. Furthermore, the composite scaffold produced displayed better mechanical properties than the neat P(3HB) scaffold. On addition of 10, 20, 30 and 40 wt% MFC to the P(3HB) matrix, the compressive modulus was found to have increased by 35%, 37%, 64% and 124%, while the compression yield strength increased by 95%, 97%, 98% and 102% respectively with respect to neat P(3HB). Both cell attachment and proliferation were found to be optimal on the polymer‐based 3D composite scaffolds produced, indicating a non‐toxic and highly compatible surface for the adhesion and proliferation of mouse chondrogenic ATDC5 cells. The large pores sizes (60 ‐ 83 µm) in the 3D scaffold allowed infiltration and migration of ATDC5 cells deep into the porous network of the scaffold material. Overall this work confirmed the potential of P(3HB)/MFC composites as novel materials in cartilage tissue engineering. © 2016 Society of Chemical Industry  相似文献   

15.
介孔生物玻璃 (Mesoporous Bioglass, MBG) 支架由于高的比表面积和介孔结构而 具有优异的成骨活性、生物降解性以及局部药物递送功能。MBG 支架可提供细胞增殖/生长、 细胞外基质沉积、营养物质获取的场所,引导新骨生长而修复骨缺损。然而,纯 MBG 支架的 力学强度低、脆性大而使其应用于骨缺损修复受到限制。将 MBG 结合生物高分子或其他生物 陶瓷制备 MBG 复合支架成为解决上述问题的有效策略之一。本文将基于 MBG 复合支架的骨组 织修复应用背景,简单介绍 MBG 复合支架的制备方法,系统总结 MBG 复合支架在骨组织修复 领域中的应用,最后对 MBG 复合支架的发展前景与挑战进行展望。  相似文献   

16.
In this study, random Poly (?-caprolactone) (PCL):Poly glycolic acid (PGA) nanofibrous scaffold with various PCL:PGA compositions were fabricated by electrospinning method. The nanofibrous scaffolds were characterized by SEM, contact angle measurement, ATR-FTIR, and tensile measurements. The results showed that with the increase of the concentration of PGA in spinning blend solution, the average diameter of nanofibers, hydrophilicity, and mechanical properties of the nanofibrous scaffolds increased. An in vitro degradation study of PCL:PGA nanofibers were conducted in phosphate-buffered saline, pH 7.2. The experiments confirm that increasing of PGA provides faster degradation rate in blended nanofibers. To assay the biocompatibility and cell behavior on the nanofibrous scaffolds, cell attachment and spreading of cardiac progenitor cells seeded on the scaffolds were studied. The results indicate that among electrospun nanofibrous scaffolds, the most appropriate candidate for myocardial tissue engineering scaffolds is PCL:PGA (65:35).  相似文献   

17.
Composite materials based on a combination of biodegradable polymers and bioactive ceramics, including chitosan and hydroxyapatite are discussed as suitable materials for scaffold fabrication. Diopside is a member of bioactive silicates; it is a good choice for hard tissue engineering because of its biocompatibility with host tissue and high mechanical strength. Chitosan and hydroxyapatite were extracted from shrimp shell and bovine bone, respectively and diopside nanoparticles were prepared by the sol-gel method. The present study reports on a chitosan composite which was reinforced by hydroxyapatite and diopside; the scaffolds were fabricated by the freeze-drying method. The so-produced chitosan-hydroxyapatite-diopside (CS-HA-DP) scaffolds were further cross-linked using tripolyphosphate (TPP) to achieve enhanced mechanical strength. The ratios of the ceramic components in composites were 5-58-37, 10-55-35, and 15-52-33 (diopside-hydroxyapatite-chitosan, w/w %). The physicochemical properties of scaffolds were investigated using Fourier-transform infrared spectrometry (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) techniques. The effect of scaffolds composition on bioactivity and biodegradability were studied well. To investigate mechanical properties of samples, compression test was done. Results showed that the composite scaffold with 5% DP has the highest mechanical strength. The porosity of composites dropped from 92% to 76% by increasing the amount of DP. Cytocompatibility of the scaffolds was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity, and cell attachment studies using human osteoblast cells. Results demonstrated no sign of toxicity and cells were found to be attached to the pore walls within the scaffolds; moreover, results illustrated that the developed composite scaffolds could be a potential candidate for tissue engineering.  相似文献   

18.
《Polymer Composites》2017,38(12):2874-2880
In this study, alkali and isocyanate surface modifications were applied to flax fiber (FF) to improve its adhesion to bio‐based thermoplastic polyurethane (TPU) matrix. In addition to these treatments, isocyanate treated FF was subjected to curing process. TPU/FF composites were prepared at a constant 30 wt% loading of the total by using melt‐blending method. Their mechanical properties, modulus of elasticity, melt‐flow, water uptake and morphological properties were investigated. All of the surface modifications resulted in better mechanical properties with respect to untreated FF. Cured isocyanate treated FF loaded composite exhibited the best results in the case of tensile strength, Young's modulus and storage modulus. Isocyanate treatments caused reduction in melt flow rate due to enhancement in interfacial interactions between phases. It was observed from the SEM micrographs that surface treated fibers dispersed more homogeneously in the TPU matrix. Results confirmed that surface modifications improved the adhesion of FF to TPU matrix. POLYM. COMPOS., 38:2874–2880, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Polysulfonamide (PSA)-based membranes are widely used for high-temperature filtration. PSA/polyurethane (TPU) composite membranes that can withstand a temperature exceeding 200 °C are fabricated by an electrospinning method. The effects of PSA/TPU mass ratio on the morphology and properties of the prepared composite membranes are investigated to obtain nanofibers with different diameters. These composite membranes are characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential scanning calorimetry, and mechanical and filtration properties of membranes are also investigated. The maximum stress and elongation at break of PSA/TPU nanofibers’ membranes reach 13.66 ±1.43 MPa and 75.01 ± 3.78%, respectively, when the PSA/TPU mass ratio is 3:7. Moreover, filtration results show high filtration efficiency (>99%) and low pressure drop for diethyl-hexyl-sebacat (DEHS) and sodium chloride (NaCl) aerosol particles at 4 m3 h−1 airflow velocity. Therefore, PSA/TPU composite membranes are a promising candidate for high-temperature filtration applications.  相似文献   

20.
In this study, biomedical thermoplastic polyurethane/graphene oxide (TPU/GO) composite scaffolds were successfully prepared using the thermally induced phase separation (TIPS) technique. The microstructure, morphology, and thermal and mechanical properties of the scaffolds were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and compression tests. Furthermore, NIH 3T3 fibroblast cell viability on the porous scaffolds was investigated via live/dead fluorescent staining and SEM observation. FTIR and Raman results verified the presence of GO in the composites. SEM images showed that the average pore diameter of the composite scaffolds decreased as the amount of GO increased. Additionally, the surface of the specimens became rougher due to the embedded GO. The compressive modulus of composite specimens was increased by nearly 200% and 300% with the addition of 5% and 10% GO, respectively, as compared with pristine TPU. 3T3 fibroblast culture results showed that GO had no apparent cytotoxicity. However, high loading levels of GO may delay cell proliferation on the specimens. POLYM. COMPOS., 35:1408–1417, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号