首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of this article was to synthesize a series of flexible polyimides containing ether linkage in main chain and clarified the effect of this ether linkage on some physical properties such as optical and thermal decomposition. Also, different functional group effects such as carbonyl (? C?O), hexa‐fluoro‐isopropylidene [? C(CF3)2? ] and phenyl (? C6H5) on these physical properties were evaluated. The structural characterization of poly(ether imide)s was performed using Fourier transform infrared, 1H‐nuclear magnetic resonance (NMR), and 13C‐NMR techniques. Optical band gap of polyimides was calculated in the range from 2.57 to 2.81 eV. Thermal characterization of poly(ether imide)s was carried out using thermogravimetry–differential thermal analysis and differential scanning calorimetry. Thermal stability of poly(ether imide)s was evaluated by initial decomposition temperature (Ton) and char. Ton value of polymers was determined in the range from 100 to 195 °C. In addition, glass transition temperatures of poly(ether imide)s were found between 144 and 148 °C. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46573.  相似文献   

2.
Hyperbranched poly(silyl ester)s were synthesized via the A2 + B4 route by the polycondensation reaction. The solid poly(silyl ester) was obtained by the reaction of di‐tert‐butyl adipate and 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The oligomers with tert‐butyl terminal groups were obtained via the A2 + B2 route by the reaction of 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl‐trisi1oxane with excess amount of di‐tert‐butyl adipate. The viscous fluid and soft solid poly(silyl ester)s were obtained by the reaction of the oligomers as big monomers with 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The polymers were characterized by 1H NMR, IR, and UV spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The 1H NMR and IR analysis proved the existence of the branched structures in the polymers. The glass transition temperatures (Tg's) of the viscous fluid and soft solid polymers were below room temperature. The Tg of the solid poly(silyl ester) was not found below room temperature but a temperature for the transition in the liquid crystalline phase was found at 42°C. Thermal decomposition of the soft solid and solid poly(silyl ester)s started at about 130°C and for the others it started at about 200°C. The obtained hyperbranched polymers did not decompose completely at 700°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3430–3436, 2006  相似文献   

3.
Poly(pyridylureas) and poly(pyridylthioureas) were synthesized by reacting 2,6‐diaminopyridine with phosgene and thiophosgene, respectively, using THF and pyridine as solvent. The synthesized polymers were characterized by IR‐spectroscopy, elemental analysis, and X‐ray photoelectron spectroscopy. Thermal stability of the polymers was determined by thermal degradation between 35°C and 700°C. The 50% weight loss of polypyridylureas was above 400°C while for the polypyridylthioureas it was above 450°C. Undoped poly(pyridylureas) and poly(pyridylthioureas) behave as semiconductors, σ = 10?9 (Ω cm)?1. After doping with I2 and SbF5, the electrical conductivity increases several orders of magnitude, σ = 10?7(Ω cm)?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
Natural rubber grafted with poly(dimethyl(methacryloyloxymethyl)phosphonate) (i.e., NR‐g‐PDMMMP) was prepared in latex medium via photopolymerization. Thermal and flame resistance properties of the NR‐g‐PDMMMP prepared with various levels of grafted PDMMMP or grafting rate (GR) were investigated. Thermal behaviors were investigated by thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). It was found that the graft copolymer exhibited phase separation with double Tg values. A shift of Tgs toward each other was observed with increasing GR, which indicated tendency to become a single phase material. Increasing GRs also caused increasing heat and flame resistance with increasing degradation temperature and level of char residue. Furthermore, increasing level of limited oxygen index (LOI) and decreasing burning rate were observed with increasing the GR. This is attributed to increasing content of char residue of the phosphorus compound, which acted as the thermal insulation and a barrier of oxygen to transfer to the burning materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Blends of two semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly‐p‐dioxanone (PPD) have been prepared by solvent casting in different compositions. Thermal, morphological, and mechanical properties of the blends were studied using modulated differential scanning calorimetry, wide‐angle X‐ray diffractometry, scanning electron microscopy (SEM), polarizing light microscopy (PLM), and tensile tests. Thermal analysis showed two glass transition temperatures nearly constant and equal to the values of the homopolymers and constant values of melting temperature (Tm) for all blend compositions, suggesting that both polymers are immiscible. The PLM and SEM observations validated these results, and showed the different morphology obtained by changing the composition of the blend. The blends 40/60, 50/50, and 60/40 presented a clearly macroseparated system, while the 20/80 and 80/20 blends presented better homogeneity, probably due to the low amount of one component in the other. It was found by PLM that PPD is able to crystallize according to a spherulitic morphology when its content is above 40%. Under this content, the crystallization of PPD is hardly observed. The blend 20/80 is more flexible, and tough material and neck formation during elongation is also observed, due to PPD, which may act as a plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2744–2755, 2003  相似文献   

6.
The preparation of new poly(urethane‐imide)s (PUIs) having acceptable thermal stability and higher flame resistance was aimed. Two new aromatic diisocyanate‐containing methyldiphenylphosphine oxide and triphenylphosphine oxide moieties were synthesized via Curtius rearrangement in situ and polymerized by various prepared diols. Four aliphatic hydroxy terminated aromatic based diols were synthesized by the reaction between ethylene carbonate and various diphenolic substances. Chemical structures of monomers and polymers were characterized by FTIR, 1H NMR, 13C NMR, and 31P NMR spectroscopy. Thermal stabilities and decomposition behaviors of the PUIs were tested by DSC and TGA. Thermal measurements indicate that the polymers have high thermal stability and produce high char. Polymers exhibit quite high fire resistance, evaluated by fire test UL‐94. The films of the polymers were prepared by casting the solution. Inherent viscosities, solubilities, and water absorbtion behaviors of the polymers were reported in. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Gas transport of H2, CO2, O2, N2, and CH4 in a series of cardo polyarylethers were examined over a temperature range of 30 ~ 100°C. These polymers include three poly(aryletherketone)s, two poly(arylethersulfone)s, and one poly(aryletherketoneketone). It was found that the large length/diameter ratio of the polymer repeat unit for cardo polyaryletherketoneketone (PEKK‐C) and strong intermolecular interaction in hydrogen‐bonded polyarylethersulfone (PES‐H) and hydrogen‐bonded polyaryletherketone (PEK‐H) resulted in a considerable increase in gas permselectivity. Alkyl‐substituted polyaryletherketone (PEK‐A), bearing a pendant bulky propyl group on the cardo ring, simultaneously exhibited 62.5% higher H2 permeability and 59.8% higher H2/N2 permselectivity than unmodified poly(aryletherketone) (PEK‐C). The causes of the trend were interpreted in terms of chain packing density, segmental motion ability, steric factor, and intermolecular interaction of polymers, together with gas kinetic diameter and critical temperature data. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 791–801, 2002  相似文献   

8.
BACKGROUND: Poly(ether amide)s have been well studied in terms of improving the physical and thermal properties of aromatic polyamides. Poly(ether amide)s of high enough molecular weight to be useful for industrial purposes are generally difficult to prepare. The objective of this project was to introduce a simple and commercially feasible process to prepare poly(ether amide)s by a polymerization reaction at relatively low temperature. RESULTS: A series of poly(ether amide)s were prepared by direct polyamidation of p‐xylylene glycol with bis(ether nitrile)s via the Ritter reaction using concentrated H2SO4 in acetic acid. The synthesized poly(ether amide)s showed good solubility in polar aprotic solvents. The resultant poly(ether amide)s had inherent viscosities in the range 0.36–1.03 dL g?1. The glass transition temperatures of the poly(ether amide)s were determined using differential scanning calorimetry to be in the range 190–258 °C. Thermogravimetric analysis data for these polymers indicated the 10% weight loss temperatures to be in the range 290–390 °C in nitrogen atmosphere. CONCLUSION: The Ritter reaction was applied for the synthesis of a variety of poly(ether amide)s with moderate to high molecular weights. This procedure provides a simple polymerization process for the convenient preparation of poly(ether amide)s in high yield at room temperature. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Thermal degradation and kinetics of polyethersulfone (PES) chips were studied in air, nitrogen, helium, and argon from room temperature to 790°C by high‐resolution thermogravimetry (TG) at a variable heating rate in response to changes in the sample's degradation rate. In the four atmospheres, a two‐step degradation process in air, argon, and helium or a three‐step degradation process in nitrogen of the PES were found in this investigation. In particular, the three‐step degradation process in nitrogen of the PES revealed by the high‐resolution TG was hardly ever observed by a traditional TG. The initial thermal degradation temperature of the PES increases with the testing atmosphere in the following order: air < argon < helium < nitrogen but the activation energy of the first major degradation of PES increases in a different order: argon < nitrogen < helium < air. The degradation temperature, the temperature at the maximum weight‐loss rate, the maximum weight‐loss rate [(dα/dT)m1 and (dα/dT)m2], char yield at 790°C, and activation energy of the first major degradation process obtained by the high‐resolution TG were compared with those by traditional TG. The PES exhibits the largest (dα/dT)m1 and the greatest char yield at 790°C in helium but the largest (dα/dT)m2 and smallest char yield in air. A significant dependency of the thermal decomposition of the polymers on the physicochemical properties (density, thermal conductivity, and oxidative ability) of the testing atmospheres is elaborated for the first time. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3631–3637, 2003  相似文献   

10.
Melamine and melamine resins are widely used as fire retardants for polymer materials used in pharmaceutical, plastic, textile, rubber, and construction industry. Melamine-based flame retardants act by blowing off intumescent layers, char formation, and emission of quenching ammonia gas and diluent molecular nitrogen. Special advantages are: low cost, low smoke density and toxicity, low corrosive activity, safe handling, and environmental friendliness. Methylated poly(melamine-co-formaldehyde) (mPMF) was used as thick (≥40?μm) fire-retardant coating for plasma pretreated polymers. A combined low-pressure plasma pretreatment consisting of oxygen plasma exposure followed by deposition of thin poly(allylamine) (ppAAm) and poly(allyl alcohol) (ppAAl) plasma polymers as adhesion promoters have improved the adhesion of thick mPMF coatings strongly. Chemical structure and composition of deposited polymer films were characterized by infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). After peeling, the peeled layer surfaces were also investigated for identification of the locus of failure and their topography using optical microscopy and XPS. Often the adhesion promotion was so efficient that the peeling of coating was not possible. Thermal properties of plasma polymers and dip-coating films were analyzed by thermogravimetric analysis. Significant improvement of fire-retardant properties of coated polymers was confirmed by flame tests.  相似文献   

11.
A series of poly(ester‐amide)s based on an ester group containing lithocholic acid derivative [3‐(3‐carboxypropionyl) lithocholic acid] and several aromatic diamines (naphthalene‐1,5‐diamine, 4,4′‐diaminodiphenyl ether, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylsulfone, benzidine, m‐phenylenediamine, p‐phenylenediamine, and tetraphenylthiophene diamine) was synthesized and characterized by solubility, viscosity, IR, differential scanning calorimetry, thermogravimetric analysis, and optical microscopy. The polymers were soluble in most of the organic solvents and had inherent viscosities in the range of 0.21–0.38 dL/g. All the polymers exhibited a nematic mesophase, but only on shearing. Thermal transitions due to mesophase formation were not seen in the differential scanning calorimetry thermograms. However, the liquid crystalline character of the polymers was observed under an optical microscope. Thermogravimetric analyses revealed the maximum decomposition temperature was 390–435°C for these polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 73–80, 2006  相似文献   

12.
A series of novel thermally stable poly(amide-imide)s (PAIs) based on non-coplaner diimide-diacid (DIDA) monomer is synthesized. These polymers are characterized by elemental analysis, FT-IR, 1H-NMR, 13C-NMR and 31P-NMR spectroscopic techniques and their physical and thermal properties are also studied. Four different dianhydrides pyromellitic anhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA)/1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA)/4,4′-oxydiphthalic anhydride (ODPA) and amino acid l-tryptophan are used to synthesize DIDA. The polymerization of DIDA with phosphorus containing triamines having phenyl moieties gives poly(amide-imide)s. The synthesized polymers are obtained in high yield and possessed inherent viscosity in the range 0.66–0.98 dL/g. These polymers display higher solubility in polar aprotic solvents, such as DMSO, NMP and DMF. In addition, the absorption edge values (λ o) obtained from their UV curves are determined, and all the resulting poly(amide-imide)s films exhibited high optical transparency. The glass transition temperature (T g) of these polymers is recorded in the range 211–265 °C, initial decomposition temperature in excess of 435 °C and char yield at 800 °C in nitrogen ranged from 52 to 70 %. Wide angle X-ray diffraction showed that all the polymers are almost amorphous.  相似文献   

13.
New, thermally stable polyimides and a poly(amide‐imide) containing a 1,3,4‐oxadiazole‐2‐pyridyl pendant group based on 2‐[5‐(3,5‐diaminophenyl)‐1,3,4‐oxadiazole‐2‐yl]pyridine were synthesized. The synthesis and characterization of the model compound 2‐{5‐[(3,5‐bistrimellitimido)phenyl]‐1,3,4‐oxadiazole‐2‐yl}pyridine (DIDA) were also investigated, and DIDA was used in the preparation of the poly(amide‐imide) in an ionic liquid, 1‐butyl‐3‐methylimidazolium bromide, as a polymerization solvent. The polymers were characterized by separating and characterizing the poly(amic acid) intermediates using infrared and elemental analyses. The prepared polymers were soluble in polar and aprotic solvents, such as dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone and dimethylacetamide. Thermal behaviour of the polymers was studied using thermogravimetric analysis and differential scanning calorimetry. The inherent viscosities of the polyimide and poly(amide‐imide) solutions were in the range 0.34–0.85 dL g?1 (in concentrated sulfuric acid with a concentration of 0.125 g dL?1 at 25 ± 0.5 °C). The removal of Co(II) from aqueous solutions was performed using one of the polyimides. It was found that this polymer had a maximum adsorption capacity and efficiency at pH = 10.0. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
A series of metallophthalocyanine‐terminated poly(aryl ether ketone) oligomers were synthesized from dicyanobenzene‐terminated poly(aryl ether ketone) oligomers with different metal chloride and phthalonitrile. All polymers exhibited high glass transition temperature and good thermal stability. These polymers showed optical absorption in the visible region and had different colors in chloroform solution. Cobalt phthalocyanine‐terminated poly(aryl ether ketone) oligomers exhibited good catalytic activity in oxidative decomposition of 2,4,6‐trichlorophenol (TCP) under H2O2 and KHSO5. The catalytic activity of KHSO5 is much better than H2O2, and more than 70% of initial TCP was decomposed within 7 h. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Various bionanocomposites were prepared by dispersing fumed silica (SiO2) nanoparticles in biocompatible polymers like poly(vinyl pyrrolidone) (PVP), chitosan (Chi), or poly(vinyl alcohol) (PVA). For the bionanocomposites preparation, a solvent evaporation method was followed. SEM micrographs verified fine dispersion of silica nanoparticles in all used polymer matrices of composites with low silica content. Sufficient interactions between the functional groups of the polymers and the surface hydroxyl groups of SiO2 were revealed by FTIR measurements. These interactions favored fine dispersion of silica. Mechanical properties such as tensile strength and Young's modulus substantially increased with increasing the silica content in the bionanocomposites. Thermogravimetric analysis (TGA) showed that the polymer matrices were stabilized against thermal decomposition with the addition of fumed silica due to shielding effect, because for all bionanocomposites the temperature, corresponding to the maximum decomposition rate, progressively shifted to higher values with increasing the silica content. Finally, dynamic thermomechanical analysis (DMA) tests showed that for Chi/SiO2 and PVA/SiO2 nanocomposites the temperature of β‐relaxation observed in tanδ curves, corresponding to the glass transition temperature Tg, shifted to higher values with increasing the SiO2 content. This fact indicates that because of the reported interactions, a nanoparticle/matrix interphase was formed in the surroundings of the filler, where the macromolecules showed limited segmental mobility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
A series of poly(lactide) (PLA)-based supramolecular polymers based on linear PLLA-b-PCL-b-PLLA triblock copolymers (PLLA, poly(l -lactide); PCL, poly(ε-caprolactone)) or/and three-arm star (PCL-b-PDLA)3 block copolymers (PDLA, poly(d -lactide)) were synthesized. The effects of the structure and composition on crystal structure, crystallization behavior, spherulite morphology and mechanical properties of the synthesized supramolecular polymers were investigated. The results of DSC and polarized optical microscopy indicated that the supramolecular polymer exhibited poor crystallization ability with respect to PCL/PLA block copolymer, and the crystallinity of the supramolecular polymer with alternating PCL/PLA multiblock structure was stronger than that with similar crosslinked network structure. The presence of molten PCL blocks disturbed the orientation of lamellae, forming spherulites with feather-like dendrites, and ring-banded spherulites were observed as the molecular weight of the PLA blocks increased. The results of tensile tests demonstrated that supramolecular polymers with larger molecular weight of PLA blocks showed the pronounced ductile fracture. On this basis, stereocomplexed supramolecular polymers were also synthesized, and it was found that the stereocomplex crystals had a significant impact on the crystallization and mechanical properties of the supramolecular polymers. Therefore, in this work a novel technique for manufacturing toughened PLA-based material and tuning its performances is proposed, which may promote the application of PLA-based materials in more fields. © 2022 Society of Industrial Chemistry.  相似文献   

17.
Phenyl acetylene terminated poly(carborane‐silanec) (PACS) was synthesized by the couple reaction of methyldichlorosilane with 1,7‐dilithio‐m‐carborane and lithium phenylacetylide. The structure was characterized using FTIR, 1H‐NMR, 13C‐NMR, 29Si‐NMR, and gel permeation chromatography. PACS exhibits solubility in common organic solvents. Thermal and oxidative properties were evaluated by thermogravimetric analysis (TGA). Thermoset exhibits extremely thermal and oxidative property and TGA curves show that the temperature of 5% weight loss (Td5) is 762°C and char yield at 800°C is 94.2% in nitrogen. In air, surprisingly, both Td5 and char yield at 800°C show slight increase, which is greater than 800°C and 95.6%, respectively. After pyrolysis, the char has no additional weight loss up to 800°C in air. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2498–2503, 2007  相似文献   

18.
Poly(ether nitrile) and poly(ether nitrile sulfone) copolymers with pendant methyl groups were prepared by the nucleophilic substitution reaction of 2,6′‐dichlorobenzonitrile with methyl hydroquinone and with varying mole proportions of methyl hydroquinone and 4,4′‐dihydroxydiphenylsulfone using N‐methyl pyrrolidone as a solvent in the presence of anhydrous K2CO3. The polymers were characterized by different physicochemical techniques. Copolymer composition was determined using the FTIR technique. Thermogravimetric data revealed that all polymers were stable up to 420°C with a char yield above 40% at 900°C in a nitrogen atmosphere. The glass‐transition temperature increased and the activation energy and inherent viscosities decreased with an increase in the concentration of the 4,4′‐dihydroxydiphenylsulfone units in the polymer. Trimerization reactions were favorable with an increase in the concentration of methyl hydroquinone units in the polymer. The crystallinity of the polymer was also studied using wide‐angle X‐ray diffraction. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1987–1994, 2005  相似文献   

19.
New poly(amide-imide)/amino functionalized Fe3O4 nanocomposites were successfully fabricated through solution intercalation technique. A poly(amide-imide) derived from an imide-containing diacid and ether linkage diamine was synthesized and characterized. Aiming to have better compatibility, the hydrophilic nature of Fe3O4@SiO2 was changed into organophilic using N-[3-(trimethoxysilyl)propyl]ethylenediamine. The amino-functionalized Fe3O4 showed well dispersion in the poly(amide-imide) matrix. Thermal gravimetric analysis results indicated that char yields of the nanocomposites were improved. Microscale combustion calorimetry results showed that poly(amide-imide) had good flame retardancy and amino-functionalized Fe3O4 has further improved this property of poly(amide-imide).  相似文献   

20.
Thermal properties of poly(phenylene sulfide amide) (PPSA) prepared using sodium sulfide, sulfur, and thiourea as sulfur sources which reacted with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure, were studied. The glass transition temperature (Tg), melting point temperature (Tm), and melting enthalpy (ΔHm) of the related polymers were obtained by use of differential scanning calorimetry analysis. The results are: Tg = 103.4–104.5°C, Tm = 291.5–304.7°C, and ΔHm = 104.4–115.4 J/g. Thermal properties such as thermal decomposition temperature and decomposition kinetics were investigated by thermogravimetric analysis under nitrogen. The initial and maximum rate temperatures of degradation were found to be 401.5–411.7°C and 437–477°C, respectively. The parameters of thermal decomposition kinetics of PPSAs were worked out to be: activation energy of degradation was 135 to 148 kJ/mol and the 60-s half-life temperature was 360 to 371°C. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1227–1230, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号