首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with the production of a natural polyol from laurel tree pruning waste, aiming the preparation of polyurethane foams. The obtained bio-polyol was characterized and applied into foams studying the influence of the isocyanate used and the addition of the physical blowing agent. The incorporation of the polyol allowed 40% polyol substitution for those foams in which TDI was used, and up to 60% using MDI. Apparent density, cell morphology, mechanical, and thermal properties were evaluated. Mechanical and thermal properties of the foams improve to a greater amount of polyol in the matrix. Specifically, the best thermal and mechanical properties (274.99 and 7275.91 kPa for compressive strength and Young Modulus, respectively) were obtained with 50% polyol substitution (0.63 RNCO/OH). Foams showed small, well-defined cell morphology. Laurel derived polyol can be used for the preparation of foams using MDI, since the mechanical, and thermal properties are promising for obtaining insulation materials in the construction industry.  相似文献   

2.
Rigid polyurethane foams (RPUFs) were synthesized with bacterial nanocellulose (BNC) at concentrations of up to 0.5 wt% using two insertion routes based on its reaction with the isocyanate precursor (ISO route) and the formation of a colloidal dispersion in the polyol precursor (POL route). The results indicated that, for BNC concentrations of only 0.1 wt%, drastic improvements of the specific elastic compressive modulus (+244.2%) and strength (+77.5%) were measured for foams with apparent density of 46.4+/− 4.7 Kg.m−3. The chemical reaction of BNC with the precursor was corroborated through the measurement of the isocyanate number and FTIR analysis. The BNC caused a significant nucleation effect, decreasing the cell size up to 39.7%. Differential scanning calorimetry analysis revealed that the BNC had a strong effect on post-cure enthalpy, particularly for the POL route. Dynamical mechanical thermal analysis under flexural conditions proved that, regardless of BNC concentration, the incorporation of BNC caused anisotropy and that the ISO route contributed to an enhanced damping factor at high temperatures. These results prove that the ISO route is a key aspect to achieve foamed nanocomposites with improved specific mechanical properties.  相似文献   

3.
We synthesized polyols with high hydroxyl functionalities (FOHs), between 9.0 and 12.6, and characterized them with differential scanning calorimetry, thermogravimetric analysis, and size exclusion chromatography after we parametrically studied the ring-opening reaction of epoxidized soybean oil with lactic acid (LA) as a function of the reaction temperature and lactic acid equivalent fraction (fLA). An increase of only 20°C in the reaction temperature (from 80 to 100°C) caused changes in the hydroxyl number (+17.8%), FOH (–25%), viscosity (–14.0%), and oligomeric content (–24.1%). fLA mostly affected the ring-opening yield, and only for fLA values above 0.4 was possible to achieve values higher than 80%. Rigid polyurethane foams (rPUFs) were synthesized and characterized with scanning electron microscopy, dynamic mechanical analysis (DMA), and compressive mechanical tests. rPUFs with a very high specific compressive strength (7.8 kPa kg–1 m3) were synthesized solely with biobased soybean oil. DMA revealed a compromised relationship between the specific compressive strength and its temperature dependence. To increase the first one, the most relevant method was to increase FOH. Instead, to increase the latter one, the OH number had to be maximized. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47959.  相似文献   

4.
Flexible polyurethane foams (FPURFs) with varied concentration of water from 3.2 to 4.2% and rapeseed oil based polyol (ROP) in the range of 13–22% in polyol premix were obtained. Effects of changes in polyurethane (PUR) formulation on the foaming process and mechanical properties of FPURFs were analyzed. It was found that the change of water content in PUR formulation influences its foaming process. Higher water content in the PUR formulation increases the growth velocity and the temperature of reaction mixture. In the case of foams modified with ROP, an opposite effect can be observed, where higher content of that component resulted in overall downturn of the foaming process and decreases of registered temperature inside the foams core. An addition of ROP beneficially influences on foams cellular structure favoring creation of finer cells. Such modification of PUR formulation with ROP increased apparent density, reduced hardness, and resilience of flexible foams. What is more the support factor of FPURFs with ROP was higher in comparison to the reference foam. Along with higher water content in the PUR formulation, apparent density and hardness has decreased and foams ability to absorb energy has been increased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42372.  相似文献   

5.
Microcellular foams are widely applied in various applications in both civil and military applications for barriers and energy absorption materials. Poly(methyl methacrylate) microcellular foams were fabricated via supercritical foaming method. Field emission scanning electron microscopy, differential scanning calorimetry, and mechanical test machine were used to visualize the foam structure and test the quasi‐static compression properties. Moreover, Split Hopkinson Bar (SHPB) setups were adopted to explore the dynamic compression properties. The experimental results show that the microcellular foams have homogeneous cell size distribution and exhibit superior compressive behavior at both quasi‐static and high strain rates. The mechanical properties depend on both foam density and strain rate. Strain rate effects are clearly observed. At quasi‐static strain rate and 7500 S?1 regime, cell wall bucking and folding are the main failure mechanism. However, at high strain rate regime, softening phenomenon is observed. By roughly calculating the energy absorbed and the temperature rise, the temperature of the foams will rise up to as high as 130 °C after conducting high strain rate compression, and it is postulated that the generated heat will destroy the cell structure of the foams. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46044.  相似文献   

6.
Foam stability and segmented polymeric phase morphology of polyurethane foams synthesized partially and completely from castor oil are investigated. Preliminary analysis of the impact of alterations in the polymeric phase on macroscopic stress dissipation in foams is also carried out. The stability and morphology show unique trends depending on the concentration of castor oil used in foam synthesis. While low and intermediate concentrations of castor oil does not significantly affect the foaming process; at high concentrations, the volumetrically expanding liquid matrix remains in a nonequilibrium state during the entire foaming period, resulting in significant foam decay from top. This increases the final foam cell density and decreases the plateau border thickness at bottom. In the polymeric phase of castor oil based foams, the fraction of monodentate urea increases at the cost of non‐hydrogen bonded urea. These monodentate urea domains undergo flocculation in foams synthesized completely from castor oil, thus prominently modifying the segmented morphology. The glass transition temperature of soft segments of partially substituted foams shows moderate increase, with indications of phase mixing between the polyether and castor oil generated urethane domains. Foams synthesized entirely from castor oil have significant sol fraction due to unreacted oligomers. The microscopic alterations in polymeric phase reduce the elastic recovery of partially substituted castor oil foams compared to its viscous dissipation under an applied stress. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40668.  相似文献   

7.
Green Polyols were synthesized from a 1‐butene cross metathesized palm oil (PMTAG) using a green, solvent free epoxidation and hydroxylation pathway. The synthetic strategy was adapted to control the degree of double bond epoxidation and ultimately the hydroxyl value of the polyols. The polyols comprised diol and tetrol monomers with terminal hydroxyl groups content as high as ~18 mol %, and achieved hydroxyl values between 83 and 119 mg KOH g?1. Functional Rigid and highly flexible foams were prepared from two designer Green Polyols. The foams presented a high thermal stability (Ton of degradation of ~270 °C), suitable glass transition temperatures (~?12 °C and ~50 °C) and compressive strength (0.21 MPa at 10% strain and ~1 MPa at 10% strain for the flexible and rigid foams, respectively) which are superior to existing lipid‐based counterparts. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43509.  相似文献   

8.
A series of flexible polyurethane foams with different polyol compositions were synthesized through the replacement of a portion of the petroleum‐based polyether polyol with biobased polyols, namely, glycerol (GLY) and hydroxylated methyl esters (HMETO). HMETO was synthesized by the alkaline transesterification of tung oil (TO; obtaining GLY as a byproduct) and the subsequent hydroxylation of the obtained methyl esters with performic acid generated in situ. FTIR spectroscopy, 1H‐NMR, and different analytical procedures indicated that the hydroxyl content increased significantly and the molecular weight decreased with respect to those of the TO after the two reaction steps. The characterization of the obtained foams, achieved through the measurement of the characteristic reaction times, thermal and dynamic mechanical analysis, scanning electronic microscopy, and density measurements, is reported and discussed. The most important changes in the modified foams were found with the addition of GLY to the formulation; this led to an increased foam density and storage rubbery modulus, which were associated with a higher crosslinking density because of the decrease in the chain length between crosslinking points. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43831.  相似文献   

9.
Recently, bioactive chitosan films featuring naturally derived essential oils have attracted much attention due to their intrinsic antimicrobial properties and applicability to a broad range of applications. Previously, the ability to form thick (t > 100 µm), chitosan‐essential oil films via solution casting has been demonstrated. However, the fabrication of well characterized ultrathin films (t < 200 nm) that contain essential oils remain unreported. Here, we systematically investigate increasing the incorporation of an essential oil, cinnamaldehyde (CIN) into ultrathin chitosan films. Films with and without the surfactant Span®80 were spin‐coated. Qualitatively, films exhibited well‐defined structural color, which quantitatively ranged from 145 to 345 nm thick. Release studies confirmed that a 6× higher release of CIN was enabled by Span®80 versus the chitosan control films, 30 µg versus 5 µg, respectively. These results suggest that nanostructured chitosan‐CIN coatings hold potential to delay bacterial colonization on a range of surfaces, from indwelling medical device to food processing surfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41739.  相似文献   

10.
Low, intermediate, and high strain rate compression testing (1.7 × 10?4 to 2500 s?1) of the hydroxyl‐terminated polybutadiene (HTPB) propellant at room temperature, were performed using a universal testing machine, a hydraulic testing machine, and a split Hopkinson pressure bar (SHPB), respectively. Results show that the stress linearly increases with strain at each condition; the increasing trend of stress at a given strain with the logarithm of strain rate changes from a linear to an exponential form at 1 s?1. By combining these characteristics, we propose a rate‐dependent constitutive model which is a linearly elastic component as a base model, then multiplied by a rate‐dependent component. Comparison of model with experimental data shows that it can characterize the compressive mechanical properties of HTPB propellant at strain rates from 1.7 × 10?4 to 2500 s?1. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43512.  相似文献   

11.
Polyurethane foams are in general flammable and their flammability can be controlled by adding flame‐retardant (FR) materials. Reactive FR have the advantage of making strong bond within the polyurethane chains to provide excellent FR over time without compromising physico‐mechanical properties. Here, phenyl phosphonic acid and propylene oxide‐based reactive FR polyol was synthesized and used along with limonene based polyol for preparation of FR polyurethanes. All the obtained foams showed higher closed cell content (above 96%). By the addition of FR–polyol, the compressive strength of the foams showed 160% increment which could be due to reactive nature of FR–polyol. Moreover, 1.5 wt % of phosphorus (P) content reduced the self‐extinguishing time of the foam from 81 (28% weight loss) to 11.2 s (weight loss of 9.8%). Cone test showed 68.6% reduction in peak heat release rate along with 23.4% reduction in thermal heat release. The change in char structure of carbon after burning was analyzed using Raman spectra which, suggests increment in the graphitic phase of the carbon over increased concentration of phosphorus. It can be concluded from this study that phosphorous based polyol could be blended with bio‐based polyols to prepare highly FR and superior physico‐mechanical rigid polyurethane foams. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46224.  相似文献   

12.
In this study, biobased polyester-ether polyols derived from meso-lactide and dimer acids were evaluated for flexible polyurethane foams (PUF) applications. Initially, the catalyst concentration was optimized for the biobased PUF containing 30% of biobased polyol (70% petroleum-based polyol). Then, the same formulation was used for biobased PUF synthesis containing 10%–40% of biobased polyols. The performance of biobased PUF was compared with the performance of the control foam made with 100% petroleum-based polyol. The characteristic times (cream, top of the cup, string gel, rise, tack-free) of biobased PUF were determined. The biobased PUF were evaluated for the mechanical (tensile and compressive) and morphological properties. As the wet compression set is important for automotive applications, it was measured for all biobased PUF. The thermal degradation behavior of biobased PUF was also evaluated and compared with the control foam. The effect of different hydroxyl and acid values of polyols on the mechanical properties of biobased PUF is also discussed. The miscibility of all components of PUF formulations is crucial in order to produce a foam with uniform properties. Thus, the miscibility of biobased polyols with commercial petroleum-based polyol was studied.  相似文献   

13.
The effects of crude glycerol impurities on acid‐catalyzed biomass liquefaction by crude glycerol were investigated. Salts (i.e., NaCl and Na2SO4) decreased biomass conversion ratios and negatively affected the properties of polyols produced. Regression models were developed and validated as appropriate for describing the relationships between organic impurities and biomass conversion ratios and between organic impurities and the hydroxyl number of polyols. Polyols produced from crude glycerol containing 0–45% organic impurities showed the hydroxyl number varying from 1301 to 700 mg KOH/g, acid number from 19 to 28 mg KOH/g, viscosity from 2.4 to 29.2 Pa s, and molecular weight (Mw) from 244 to 550 g/mol. Crude glycerol containing 40–50 wt % of organic impurities was suitable to produce polyols with suitable properties for rigid and/or semi‐rigid polyurethane (PU) foam applications. The produced PU foams showed density and compressive strength comparable to those derived from petrochemical solvent‐based liquefaction processes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40739.  相似文献   

14.
Environmental concerns continue to pose the challenge to replace petroleum-based products with renewable ones completely or at least partially while maintaining comparable properties. Herein, rigid polyurethane (PU) foams were prepared using soy-based polyol for structural and thermal insulation applications. Cell size, density, thermal resistivity, and compression force deflection (CFD) values were evaluated and compared with that of petroleum-based PU foam Baydur 683. The roles of different additives, that is, catalyst, blowing agent, surfactants, and different functionalities of polyol on the properties of fabricated foam were also investigated. For this study, dibutyltin dilaurate was employed as catalyst and water as environment friendly blowing agent. Their competitive effect on density and cell size of the PU foams were evaluated. Five different silicone-based surfactants were employed to study the effect of surface tension on cell size of foam. It was also found that 5 g of surfactant per 100 g of polyol produced a foam with minimum surface tension and highest thermal resistivity (R value: 26.11 m2·K/W). However, CFD values were compromised for higher surfactant loading. Additionally, blending of 5 g of higher functionality soy-based polyol improved the CFD values to 328.19 kPa, which was comparable to that of petroleum-based foam Baydur 683.  相似文献   

15.
Liquefaction of sawdust was studied using glycerol and methanol as mix solvents. A new bio‐polyol product consisting of high purity multi‐hydroxy compounds was obtained by precipitation of the hydrophobic organics from the liquefied product in an aqueous solution. As identified by GC‐MS, the dominate components in bio‐polyol were glycerol, glycerol derivatives, and multiple types of sugar derivatives. By using the mass ratio of m (sawdust) : m (glycerol) = 1 : 1, the total content of multi‐hydroxy compounds reached 90.84%. The hydroxyl number of the bio‐polyol was 1287 mgKOH/g with a rotational viscosity of 1270 cP. Preparation of polyurethane foams using bio‐polyol and isocyanate was also studied. Water was used as an environmental friendly blowing agent. The factors that influence the cell structure of foams (i.e., catalyst, dosage of blowing agent, and mass ratio of bio‐polyol to PEG‐400 were studied. The compressive strength of the synthesized foam was 150 Kpa, which met the requirement of Chinese specification for rigid foams. The synthesized foams were characterized by FTIR, SEM, and TG. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40096.  相似文献   

16.
Bacterial nanocellulose (BNC) was used to synthesize polyurethane foams (PUFs) prepared from castor oil polyol and MDI diisocyanate using water as the blowing agent. The BNC reacted with the isocyanate, increasing the weight content of urethane hard segments (HS). It did not behave as a nucleation agent, forming a nanometric distribution of cells within the struts followed by a reduction of the apparent density (?7.6%) and a relevant increase of cell size in the growth direction (+37.9%). An alignment of the BNC parallel to the cell walls was observed, producing a nanocomposite with a higher reinforcement weight fraction in that area. At only 0.2 wt %, the BNC behaved as a nanostructured reinforcement, improving the specific compression modulus and strength by +4.67% and +23.6%, respectively, as well as the thermomechanical properties, with an improvement of the specific E ′ at 30 °C of +52.4%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44982.  相似文献   

17.
In this study, the outcome of operating conditions of extrusion assisted by supercritical CO2 for the manufacture of poly(lactic acid) foams was investigated. It was found that the temperature before and inside the die was the most prominent parameter to tune the foam properties. Foam porosity as high as 96% could be obtained (for die temperature between 109 and 112 °C), representing a total expansion exceeding 30. In this temperature range, low crystallinity (≈6%) was induced giving foams with high radial expansion i.e., large diameters and open porosity. At 112 °C, the CO2 was able to greatly expand the foams, providing 73% of its potential blowing effect. On the other hand, a low die temperature (below a die temperature of 107 °C) induces a significantly higher level of crystallinity resulting in foams with closed‐porosity and a large longitudinal expansion due to higher strength of the polymer melt. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45067.  相似文献   

18.
A new method for preparing alginate foams with progressive release of copper in the presence of sodium lauryl sulfate (SLS, foaming agent) has been designed. Copper acts as the ionotropic gelling agent through the reaction of copper carbonate with gluconolactone. The process does not require freeze‐drying contrarily to the conventional method used for preparing macroporous alginate foams. The new materials investigated in this study have remarkable thermal properties, including thermal conductivity lower than 0.041 W m?1 K?1 and low heat release (below 2 kJ g?1), which allows labeling these foams self‐extinguishing materials. An experimental design methodology, based on a Box‐Behnken plan with three parameters and three levels, is successfully used for evaluating the impact of the amounts of alginate, SLS, and copper carbonate on the productivity, apparent density, and shrinking at air‐drying. It yielded an optimization of the process for the manufacturing of light, and stable/rigid insulating and thermally stable materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45868.  相似文献   

19.
Blends of rosin and beeswax were studied in terms of their thermal and mechanical behaviors. Their glass transition and α relaxation were both characterized, either by differential scanning calorimetry or by dynamic mechanical thermal analysis. In this study, we focused particularly on the impact of the microstructure on the mechanical properties, as studied by compression, shear, and nanoindentation tests. It is shown that at room temperature, these blends exhibited a viscous behavior in both the elastic and plastic regimes. From these measurements, a superplastic behavior was highlighted for blends with more than 60 wt % rosin. This superplastic behavior constitutes a real new potential in the mechanical reliability of adhesives based on rosin, which are more generally known for their very brittle behavior. As a result, it should open the way for the design of new shapes. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The failure mechanism of rigid polyurethane foam (RPUF) under room temperature (RT) and high temperature vibration conditions was investigated by experiment and finite element stimulation. Damaged RPUF specimens were prepared at different vibration amplitudes ranging from 0 to 19.879 mm at RT and 150 °C for different vibration times. The tensile test was utilized to evaluate the vibration damage degree of RPUFs, and the results exhibited that tensile strength decreased gradually with the increase of vibration amplitude and time at both RT and 150 °C. Thermogravimetric analysis and Fourier transform infrared spectroscopy illustrated that thermal degradation of RPUF is attributed to the decomposition of carbonyl urethane groups at 150 °C. The scanning electron microscopy analysis of the tensile fracture surfaces revealed that the vibration failure of RPUF mainly resulted from the existence of microcracks in cell structure. A finite element simulation was established by ABAQUS to study stress distribution of RPUF under different vibration loads, which then demonstrated that the microcracks are most likely to exist on the junction of two microcell units, which is due to convergence of stress in the process of vibration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48343.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号