首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dialkyl furan‐2,5‐dicarboxylates and epoxidized fatty acid esters (EFAE) of varying molecular weights and volatilities, as well as their mixtures, were investigated as alternative plasticizers for poly(vinylchloride) (PVC). The EFAE utilized were epoxidized soybean oil (ESO) and epoxidized fatty acid methyl ester (e‐FAME). All plasticizers were compatible with PVC, with plasticization efficiencies usually increasing with decreasing molecular weights of the plasticizers (except in the case of ESO, which was remarkably effective at plasticizing PVC, in spite of its relatively high molecular weight). In comparison with phthalate and trimellitate plasticizers, the alternatives generally yielded improved balance of flexibility and retention of mechanical properties after heat aging, with particularly outstanding results obtained using 30?50 wt % e‐FAME in mixtures with diisotridecyl 2,5‐furandicarboxylate. Although heat aging characteristics of the plasticized polymer were often related to plasticizer volatilities, e‐FAME performed better than bis(2‐ethylhexyl) 2,5‐furandicarboxylate, and bis(2‐ethylhexyl) phthalate of comparatively higher molecular weights. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42382.  相似文献   

2.
Two common approachs to flame retard flexible PVC are phosphate ester plasticizers and antimony oxide. When used individually, each displays excellent flame suppressing characteristics. However, the combination of the two has been reported to show lower than expected flame resistance. Zinc borate plays a synergistic role with mixtures of phosphate ester plasticizers and antimony oxide, producing one of the most effective FR composite in this study. A review of this behavior in various PVC formulations is presented.  相似文献   

3.
The reaction of poly(vinyl chloride) (PVC) with mercaptoalkyltrialkoxysilanes yielded silane-grafted PVC that can be cross-linked by the hydrolytic mechanism. The grafting of the silanes on the plasticized and unplasticized PVC was carried out at 180° C during processing in the presence of basic lead-containing stabilizers. The reaction is favorably affected by the presence of plasticizers and lubricants containing polar, preferably ester, groups. The silane-grafted and cross-linked polymers have satisfactory thermal stability. The results of strength measurements at elevated temperatures after cross-linking by water indicate that the material obtained has greatly improved parameters that are suitable for a number of applications. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Plasticized poly(vinyl chloride) (PVC) is one of the most useful polymeric materials on an industrial scale because of its processability, wide range of obtainable properties, and low cost. PVC plastisols are used in the production of flexible PVC foams. Phthalates are the most used plasticizers for PVC, and in a previous article (part I of this series), we discussed the influence of phthalate ester type plasticizers on the foaming process and on the quality of the foams obtained from the corresponding plastisols. Because the use of phthalate plasticizers has been questioned because of possible health implications, the objective of this work was to undertake a similar study with 11 commercial alternative plasticizers to phthalates. The evolution of the dynamic and extensional viscosity and the interactions and thermal transitions undergone by the plastisols during the heating process were studied. Foams were obtained by rotational molding and were characterized by the determination of their thermomechanical properties, density, and cell size distribution. Correlations were obtained between the molecular weight and structure of the plasticizer and the behavior of the corresponding plastisols. After the characterization of the final foamed product, we concluded that foams of relatively good quality could be prepared with alternative plasticizers for replacing phthalates. Several plasticizers {Mesamoll (alkylsulfonic phenyl ester), Eastman 168 [bis(2‐ethylhexyl)‐1,4‐benzenedicarboxylate], Hexamoll [di(isononyl) cyclohexane‐1,2‐dicarboxylate], Citroflex A4 acetyl tributyl citrate (ATBC), and Plastomoll (dihexyl adipate)} were found to be interesting alternatives in the production of soft PVC foams because they provided very good quality foams with properties similar to, or even better than, those obtained with phthalate plasticizers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Mixed diesters of three diols-ethylene glycol, diethylene glycol, and 2-butene-1,4-diol—were prepared wherein one of the ester moieties was benzoate. The laurates were shown to be excellent plasticizers for polyvinyl chloride (PVC) resin. Diesters containing two aroyl groups, or benzoyl and a short branched-chain alkanoyl group were also shown to be compatible plasticizers for PVC resin. Longer chain acids, including oleic and erucic, gave incompatible plasticizers. Benzoyloxyethoxyethyl laurate plasticized PVC had low temperature properties, volatility, and thermal stability superior to PVC plasticized with di-2-ethylhexyl phthalate.  相似文献   

6.
Flory-Huggins interaction parameters, χ, have been determined as a function of plasticizer composition for poly(vinyl chloride) in various binary mixtures of phthalate ester plasticizers using a method involving the micro-determination of the temperature at which PVC particles in excess plasticizer appear to melt. An optimum composition at which χ goes through a minimum was found to exist for some of the systems. A good correlation between the apparent melting temperature tm and χ for the neat plasticizers with PVC was also established.  相似文献   

7.
以2,5呋喃二甲酸为基体分别与反式2己烯醇、正己醇反应,制备出不同分子结构的生物基增塑剂。通过冲击、拉伸测试并结合动态力学分析考察增塑剂分子结构及添加量对聚氯乙烯(PVC)力学性能的影响;采用毛细管流变仪考察增塑剂分子结构及添加量对PVC熔体流动性的影响。结果表明,2种新型生物基增塑剂均能提高PVC材料的冲击强度,且2,5呋喃二甲酸二正己酯(DNHFDC)增塑效果优于2,5呋喃二甲酸二(反式2己烯)酯(DT2HFDC);当添加量为10份(质量份,下同)时,以DNHFDC为增塑剂的PVC材料比添加等量DOP时的冲击强度提高了0.28 kJ/m2,拉伸强度降低了4.2 MPa。  相似文献   

8.
In this study, chemical recycling products of waste poly(ethylene terephthalate) with oligoesters were used as new plasticizers for poly(vinyl chloride) (PVC). The preparation conditions of the dry blend mixtures of the suspension PVC containing synthesised plasticizers were similar to the conditions of the preparing mixtures with commercial plasticizers. The plasticization efficiency of PVC plasticizers was then examined by analysis of the mechanical, physical and chemical properties, as well as the thermal resistance and migration of plasticizer molecules from polymer matrix. Test results proved that compositions with synthesised oligomeric plasticizers possessed similar or better properties than those containing commercial oligomeric plasticizers and much better properties than those having monomeric plasticizers. Thermal stabilities of the proposed plasticizers were higher than those of the commercial plasticizers either monomeric (bis(2-ethylhexyl)phthalate) or oligomeric, despite the fact that the synthesised oligoesters did not contain any antioxidant. The best properties, especially low volatility, very good mechanical properties, low migration were resulted of the transesterification of the waste PET with oligoesters based on adipic acid, triethylene glycol and 2-ethylhexanol which were selected as plasticizers synthesised on the technical scale. The tested plasticized PVC compositions possessed very good tear resistance, tensile strength, decrease of weight loss after 168 h at 80 °C and low migration. Processing properties of PVC compositions containing these synthesised plasticizers confirmed their effectiveness in these compositions for extrusion process.  相似文献   

9.
综述了利用可再生性原料合成环氧中性油脂和环氧脂肪酸甲酯的研究现状及应用前景,介绍了化学法和酶法制备环氧增塑剂的反应原理,根据催化剂的不同,阐述了其合成方法的进展。突出了高效环保型催化剂——脂肪酶的应用。  相似文献   

10.
聚氯乙烯中常用的环保型增塑剂主要有柠檬酸酯类增塑剂、对苯二甲酸酯类增塑剂、聚酯类增塑剂、偏苯三酸酯增塑剂、环己烷二羧酸酯类增塑剂、植物油基增塑剂等,通过了解和分析这些增塑剂的特征和合成,推进环保型增塑剂在塑料生产中的应用.  相似文献   

11.
In the present study, a renewable resource-based plasticizer was synthesized by the lipase-catalyzed esterification reaction of furfuryl alcohol (FA) and castor oil fatty acid (COFA). The resultant ester (FA-COFA ester) was used as secondary plasticizers to the polyvinyl chloride (PVC) films. The PVC films were formulated using the combination of a conventional plasticizer di-butyl phthalate (DBP) and FA-COFA ester as a secondary plasticizer at different concentrations. Films were characterized by X-ray diffraction analysis, scanning electron microscopy, thermal analysis, mechanical performance, and migration stability. A biodegradability study of the PVC films showed increased degradability with increasing concentration of the FA-COFA ester in the PVC film. The study showed that ester of FA and COFA could be a substitute of DBP by as much as 80% of the total plasticizer with improved elongation and tensile properties, and such a kind of sustainable resource-based PVC blend films could be used as a good packaging material with biodegradable property.  相似文献   

12.
The effects of plasticizers on poly(vinyl chloride) (PVC) plastisol mixtures were investigated. The investigations were carried out by determining the density of the PVC foam obtained by gelling the plastisol, as well as its elasticity and degree of expansion. Two series of experiments using different types of PVC were performed, using eight plasticizers, individually or as mixtures. Two-component plasticizer mixtures showed better properties than single-component plasticizers, and mixtures of di-iso-heptyl phthalate (DiHP) and butyl benzyl phthalate (BBP) proved to be the most appropriate. The effect of plasticizer amount also was investigated, and of the three parameters studied, the foam density, which steadily increased with plasticizer amount, was the critical one. It was also shown that in order to obtain consistent results, the foam expansion had to be precisely timed and the temperature carefully chosen.  相似文献   

13.
J. T. van Oosterhout  M. Gilbert   《Polymer》2003,44(26):8081-8094
Solid–gel transition temperatures, tm, were measured for PVC in binary and ternary mixtures of plasticizers. Data were used to investigate interactions between plasticizers, and their effect on tm and polymer–plasticizer interaction (χ) values. The UNIFAC-FV method was used to predict Gibbs free energy of mixing, and χ for a range of plasticizers, and interactions for one quaternary mixture. Synergy was observed when one or more branched phthalates were mixed with ODPP, but none when three phthalates were mixed. Mixtures of DOP with aliphatic ester plasticizers again produced synergy. Equations were produced to enable interaction coefficients of different plasticizer blends to be predicted. It was found that interaction coefficients increase as the difference in molar mass between the two plasticizers increases. Calculated χ values were generally similar to experimental values. The lower limit of Gibbs free energy of mixing required for plasticization of PVC using monomeric plasticizers was calculated to be about −0.9 J/g, and that for polymeric plasticizers −0.15 J/g. Equations were produced enabling Gibbs free energy of mixing to be predicted from the amount of C atoms in the plasticizer.  相似文献   

14.
Evolution of the complex viscosity of pastes of PVC‐VA (vinyl chloride‐vinyl acetate copolymer) plasticized with different commercial plasticizers has been studied. Knowledge of the rheological behavior of the formulations allows for better understanding of the gelation and fusion processes. Twenty commercial plasticizers of different types and with different functional groups have been studied and are grouped into five families: phthalate esters with linear chains, phthalate esters with branched chains, adipates (normal and polymeric), citrates, and rest of the plasticizers (carboxylates, alkylsulfonates, and pentaerythritol ester derivatives). Interesting relationships among the observed rheologies and the nature and molecular weight of the plasticizer have been observed. The evolution of the complex viscosity with temperature—at the temperatures where the blowing agents normally used in PVC plastisol foaming processes generate the main amount of gas—has been newly discussed with regard to the chemical structure and molecular weight of all of the plasticizers used. It was found that several different dynamic processes must be synchronized in order to understand the relationships among the chemical structure, plasticization, plasticizer compatibility, rheological properties, and foaming process of such materials. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Plasticizers are nonvolatile organic liquids that impart flexibility to polymers. Due to environmental, health, and safety reasons, the industry is looking for bioplasticizers to replace petroleum-derived phthalates. To fulfill this need, soy fatty acid ester estolides were synthesized, characterized, and evaluated as phthalate replacements. Soybean oil was transesterified with methanol or glycerol to form lower molecular weight fatty acid esters that were epoxidized and ring opened with acetic acid and acetylated to give the final products. Ring opening and acetylation of the epoxidized oleic acid esters gave acyclic acetate fatty acid ester estolides, whereas the polyunsaturated fatty acid esters, linoleate, and linolenate gave cyclic tetrahydrofuran derivatives and cross-linked higher molecular weight materials. The cyclization mechanism to form the tetrahydrofuran derivatives was postulated. Soy fatty acid ester estolides were compounded with formulated poly(vinyl chloride), (PVC) and tested for their functional properties. The physical and functional properties of the new bioplasticizers were compared with commercial plasticizers. The elasticity of PVC compounded with experimental plasticizers and commercial phthalates was comparable. PVC compounded with fatty acid methyl ester estolide showed lower glass transition temperature and similar tensile properties compared to PVC compounded with the commercial phthalate. PVC compounded with the glyceryl fatty acid ester estolide showed a higher glass transition temperature, higher tensile properties compared to PVC compounded with the commercial phthalate.  相似文献   

16.
DOA, (di-2-ethylhexyl) adipate, is a monomeric ester plasticizer frequently used in PVC compositions to enhance flexibility at low temperatures. DOA has several drawbacks; it lacks permanence in the PVC matrix and it has poorer compatibility than its phthalate homologue (DOP). By reacting adipic acid with polyols, polymer chains of increased molecular weights can be formed. These polyester plasticizers offer increased permanence over DOA. The focus of this paper is to demonstrate how adipate plasticizers, starting with DOA and increasing in molecular weight, affect the performance of flexible vinyl, especially in regard to UV resistance and permanence. The following series of evaluations will show that as the molecular weight of plasticizers increases, the permanence properties (volatility and extraction by various media) increase. The ability to withstand degradation from ultraviolet light also increases with higher molecular weight.  相似文献   

17.
Plasticizer leaching from poly(vinyl chloride) (PVC) tubing is a well‐studied phenomenon and is a real issue in medical care today. The present study focuses on the release of two plasticizers 1,2‐cyclohexane dicarboxylic acid diisononyl ester (DINCH) (primary) and epoxidized soy bean oil (ESBO) (secondary) from PVC extension tubings used in an oncopediatric unit. The release of plasticizers is calculated by comparison to unused tubings with the same batch number. Both the DINCH and ESBO ratio diminishes in used versus new extension tubings. The loss of plasticizers has not been related to the presence of a specific drug. Our results confirm the leaching of classic plasticizers like the DINCH and of secondary plasticizers like the ESBO from tubings in real life. It confirms too the existence of a complex phenomenon in which exchanges between drugs, lipids, PVC matrices, and the administration sequences can change the global release of plasticizers. Considering all the variables involved in real‐life data, the in vitro testing appears to be the most efficient way to confirm these observations. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46649.  相似文献   

18.
The poly(vinyl chloride) (PVC) industry plays an important role in today's total plastics industry. The major volume of PVC is used as soft and plasticized PVC. PVC applications consume approximately 80% of the total production of plasticizers. Most of the common plasticizers are aromatic esters of phthalic acid. In the majority of countries, phthalate plasticizers are banned due to their carcinogenic properties. The concern raised about toxicity led to a large demand for bio‐based non‐toxic plasticizers. Hence, there is an increasing interest in replacing the phthalate plasticizers with those produced from simple bio‐based materials. Dehydrated castor oil fatty acid (DCOFA) is a renewable resource which can be esterified and used as an environment friendly plasticizer for PVC. Benzyl ester (BE) was prepared by reacting DCOFA with benzyl alcohol in the presence of catalyst at 170–180 °C. Esterification was further confirmed by acid value, hydroxyl number, 1H NMR and Fourier transform IR spectroscopy. The modified plasticizer was used in various proportions as a co‐plasticizer in PVC for partial replacement of dioctyl phthalate (DOP). With an increase in the proportion of BE in PVC samples, a good plasticizing performance was observed. The incorporation of BE also resulted in a reduction in viscosity and viscosity pick‐up and improved mechanical, exudation, thermal degradation and chemical resistance properties. The presence of BE showed a reduction in the whiteness index due to presence of conjugated double bonds in the structure. The results of DSC, XRD and Shore hardness studies showed no significant variation in properties compared with those of DOP‐plasticized sheets and thus we can conclude that BE can be used as a co‐plasticizer in PVC. © 2013 Society of Chemical Industry  相似文献   

19.
Postconsumer water bottle poly(ethylene terephthalate) (PET) flakes were depolymerized with ethylene glycol (EG) by the glycolysis reaction in the presence of zinc acetate as the catalyst. In the depolymerization reactions, different weight ratios of PET/EG were used. In order to obtain polyesters used as PVC plasticizers, these glycolysis products containing hydroxyl end groups were reacted with an adipic acid (AA)–containing diacid group at equivalent amounts. In order to obtain PVC plastisols, PVC was dispersed into a plasticizers' mixture composed of di-isooctyl phthalate (DOP) and polyester products by using a high-speed mixer (PVC/plasticizers, 65/35 w/w). For the preparation of plasticizer mixture polyester products were used at a weight ratio of 20%, 40%, 60% of DOP. Plasticized PVC sheets were prepared from plastisols and their glass transition temperatures (Tg), migration, and mechanical properties were determined. The results show that the polyester products obtained from glycolysis products of waste PET can be used as secondary plasticizers, with DOP for PVC.  相似文献   

20.
J.J. Ziska  J.W. Barlow  D.R. Paul 《Polymer》1981,22(7):918-923
Blends of poly(vinyl chloride), PVC, with the polyesters poly(butylene adipate), poly(hexamethylene sebacate), poly(2,2-dimethyl,1,3-propylene succinate) and poly(1,4-cyclohexanedimethanol succinate) were found to exhibit a single, composition dependent glass transition. Thus, these polyesters are miscible with PVC as others have reported for poly(?-caprolactone). However, mixtures of poly(ethylene succinate), poly(ethylene adipate) and poly(ethylene orthophthalate) with PVC were found not to be miscible. Melting point depression has been used to estimate the blend interaction parameter. These results combined with others from the literature suggest that there is an optimum density of ester groups in the polymer chain for achieving maximum interaction with PVC. Too few or too many ester groups result in immiscibility with PVC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号