首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A naval hybrid buckypaper was fabricated by vacuum filtration method with monodispersion solution of Fe3O4 decorated Multiwalled carbon nanotubes (MWCNTs). The morphology, element composition and phase structure of hybrid buckypaper were characterized by field‐emission scanning electron microscope, energy dispersive spectrometer, and X‐ray diffraction. The microwave absorption and complex electromagnetic properties of the composites surface coated MWCNTs buckypaper (or Fe3O4/MWCNTs hybrid buckypaper) have been investigated in the frequency range of 8–18 GHz. The results indicate that the microwave absorption properties of composite structure have been evidently improved due to the Fe3O4/MWCNTs hybrid buckypaper' high magnetic loss and suitable dielectric loss properties. The reflection loss of composite surface coated Fe3O4/MWCNTs hybrid buckypaper (with a matching thickness d = 0.1 mm) is below ?10 dB in the frequency range of 13–18 GHz, and the minimum value is ?15.3 dB at 15.7 GHz. Thus, Fe3O4/MWCNTs hybrid buckypaper can become a promising candidate for electromagnetic‐wave‐absorption materials with strong‐absorption, thin‐thickness and light‐weight characteristics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41974.  相似文献   

2.
The use of secondary reinforcing fillers such as graphene or multi-wall carbon nanotube (CNT) for improving mechanical properties is an effective strategy to obtain high performance magneto-rheological elastomers (MREs). Therefore, MREs were prepared via solution mixing of room-temperature-vulcanized silicone rubber (RTV-SR) and iron oxide (Fe3O4), and hybridized with iron wire, Few-layer graphene (FLG), and CNT as secondary nanofillers. The isotropic mechanical properties were studied through compressive tests, and their compressive moduli and reinforcing factors were determined. From these studies, it was found that CNT-based hybrid MREs show the highest compressive mechanical properties. For example, at 80 per hundred parts of rubber (phr), the compressive modulus was 3.5 MPa (RTV-SR/Fe3O4), 4.1 MPa (RTV-SR/Fe3O4-FLG), 5.5 MPa (RTV-SR/Fe3O4-CNT), and 3.7 MPa (RTV-SR/Fe3O4-iron wires). A nanofiller with higher aspect ratio (CNT), has a strong effect on the isotropic mechanical properties, whereas a lower aspect ratio nanofiller (FLG) has a greater effect on magnetic sensitivity. Although iron wires with lower specific surface areas can only improve the mechanical properties slightly, they can improve the magnetic sensitivity of MREs because of its stronger magnetic behavior.  相似文献   

3.
The increasing demand for packaging materials calls for new technologies to achieve excellent thermal conductivity of polymer composites with low content of thermal conductive filler. This article prepared a kind of magnetically functionalized multilayer graphene (Fe3O4@MG) via electrostatic interactions, which efficiently enhanced the thermal conductivity of silicone rubber (SR) composites by the alignment of Fe3O4@MG in an external magnetic field. The morphology and structure of the Fe3O4@MG together with the thermal conductivity of corresponding Fe3O4@MG/SR composites were systematically investigated by SEM, TEM, XRD, elemental mapping, and thermal conductivity tester. The obtained results showed that Fe3O4@MG was induced to form chain-like bundles in silicone rubber matrix under the applied magnetic field, which enhanced the MG–MG interaction, and formed effective thermal pathways in the alignment direction. Furthermore, as coating mass ratio of Fe3O4@MG increased, the thermal conductivity of randomly oriented Fe3O4@MG/silicone rubber composites (R-Fe3O4@MG/SR) decreased gradually, whereas the through-plane thermal conductivity of vertically aligned Fe3O4@MG/silicone rubber composites (V-Fe3O4@MG/SR) increased even filled with same contents of thermal conductive filler. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47951.  相似文献   

4.
In this article, conductive and magnetic nanocomposites composed of polypyrrole (PPy), magnetite (Fe3O4) nanoparticles (NPs), silver (Ag) NPs, have been successfully synthesized with a two step process. First, the PPy/Fe3O4 was prepared by the ultrasonic in situ polymerization. Next, the PPy/Fe3O4/Ag was synthesized through the electrostatic adsorption. The products were characterized by fourier‐transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric (TG), conductivity and magnetization analysis, and the results showed that the Ag NPs with the good conductivity coated uniformly on the surface of PPy/Fe3O4 and improved the conductivity of PPy/Fe3O4/Ag composites. In addition, as compared with PPy/Fe3O4, PPy/Fe3O4/Ag composites also have the excellent electro‐magnetic property and enhanced thermostability. POLYM. COMPOS., 35:450–455, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Poly(ethylene‐co‐vinyl acetate) (EVA)/magnetite (Fe3O4) nanocomposite was prepared with different loading of Fe3O4 nanoparticles. The mixing and compounding were carried out on a two‐roll mixing mill and the sheets were prepared in a compression‐molding machine. The effect of loading of nanoparticles in EVA was investigated thoroughly by different characterization technique such as transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and technological properties. TEM analysis showed the uniform dispersion of filler in the polymer matrix and the dispersion of filler decreased with increase in filler content. XRD of the nanocomposite revealed the more ordered structure of the polymer chain. An appreciable increase in glass transition temperature was observed owing to the restricted mobility of Fe3O4‐filled EVA nanocomposite. TGA and flame resistance studies indicated that the composites attain better thermal and flame resistance than EVA owing to the interaction of filler and polymer segments. Mechanical properties such as tensile strength, tear resistance, and modulus were increased for composites up to 7 phr of filler, which is presumably owing to aggregation of Fe3O4 nanoparticle at higher loading. The presence of Fe3O4 nanoparticles in the polymer matrix reduced the elongation at break and impact strength while improved hardness of the composite than unfilled EVA. The change in technological properties had been correlated with the variation of polymer–filler interaction estimated from the swelling behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40116.  相似文献   

6.
A novel series of composites of polyarylene ether nitrile terminated with phthalonitrile (PEN‐t‐Ph) filled with hybrid Fe3O4 nanospheres (h‐Fe3O4) was prepared via in situ composition. Based on the cross‐linking interactions between the phthalonitrile at the end of PEN‐t‐Ph molecular chains and the phthalonitrile on the surface of h‐Fe3O4 particles to form phthalocyanine ring, it was shown that the PEN‐t‐Ph/h‐Fe3O4 system had superior interfacial compatibility and the h‐Fe3O4 particles were locked in the matrix resin. These results had been confirmed by scanning electron microscope analysis. By orthogonal experiments and statistic analysis, the optimal conditions of cure temperature, type of h‐Fe3O4 and content of h‐Fe3O4 had been determined. Meanwhile, the results of range analysis and variance analysis indicated that the cure temperature had great effects on the thermal properties. Thermal studies revealed that the glass transition temperature of PEN‐t‐Ph/h‐Fe3O4 cured at 320°C was 214.7°C, increased by about 40°C compared to the PEN‐t‐Ph/h‐Fe3O4 without heat treatment, and the temperature corresponding to the weight loss of 5 wt % was increased by about 20°C. Mechanical measurements indicated that PEN‐t‐Ph/h‐Fe3O4 cured at 320°C possesses excellent mechanical properties with tensile strength of 93.33 MPa and tensile modulus of 2414.05 MPa, 9.91 MPa, 355.76 MPa higher than pure PEN‐t‐Ph film cured at 320°C, and 13.26 MPa, 397.90 MPa higher than PEN‐t‐Ph/h‐Fe3O4 without heat treatment. Most importantly, the presence of h‐Fe3O4 particles endows PEN‐t‐Ph/h‐Fe3O4 system with good magnetic property. Thus, PEN‐t‐Ph/h‐Fe3O4 cured at 320°C may have potential applications in field of magnetic materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40418.  相似文献   

7.
Electromagnetic interference shielding of magneto-dielectric (BaTiO3-Fe3O4) and magneto-conducting (f-MWCNT-Fe3O4) fillers based polymer electrolyte composites in the X-band have been studied in the present work. Magneto-dielectric and magneto-conducting fillers have been obtained by in situ preparation of Fe3O4 nanoparticles by chemical precipitation in the presence of BaTiO3 and functionalized multiwalled carbon nanotubes (f-MWCNT). Functionalization of MWCNT has resulted in their strong bonding with the polymer electrolyte adversely affecting the charge transport properties and shielding effectiveness. Dielectric, magnetic and conducting properties of the magneto-dielectric and magneto-conducting fillers are found to be significantly different as a result of coating by Fe3O4 nanoparticles on BaTiO3 and f-MWCNT. Combining two fillers in a single nanocomposite has exhibited non-complimentary addition of their individual properties. The ultra-sonication method of dispersion of the magneto-conducting filler has been found to give better conducting and shielding effectiveness in comparison to the homogenization method due to better disentanglement of the nanotubes.  相似文献   

8.
A detailed structural analysis on the in situ synthesized β‐Ca3(PO4)2/α‐Fe2O3 composites is demonstrated. Compositional ratios, the influence and occupancy of iron at the β‐Ca3(PO4)2 lattice, oxidation state of iron in the composites are derived from analytical techniques involving XRD, FT‐IR, Raman, refinement of the powder X‐ray diffraction and X‐ray photoelectron spectroscopy. Iron exists in the Fe3+ state throughout the investigated systems and favors its occupancy at the Ca2+(5) site of β‐Ca3(PO4)2 until critical limit, and thereafter crystallizes as α‐Fe2O3 at ambient conditions. Fe3+ occupancy at the β‐Ca3(PO4)2 lattice yields a Ca9Fe(PO4)7 structure that is isostructural with its counterpart. A strong rise in the soft ferromagnetic behavior of β‐Ca3(PO4)2/α‐Fe2O3 composites is obvious that depends on the content of α‐Fe2O3 in the composites. Overall, the diverse level of iron inclusions at the calcium phosphate system with a Ca/P ratio of 1.5 yields a structurally stable β‐Ca3(PO4)2/α‐Fe2O3 composites with assorted compositional ratios.  相似文献   

9.
Because of the sizes of the pore throat are on the nanometer scale, nanoparticles with sizes on the nanoscale have been developed as candidates for plugging materials during drilling in shale formation. In this study, Fe3O4 nanoparticles were prepared by a coprecipitation method, and then, Fe3O4/poly(acrylic acid) (PAA) hybrid nanoparticles were obtained through the modification of the Fe3O4 nanoparticles with PAA. The hybrid nanoparticles were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The magnetic properties, salt tolerance, and compatibility with sulfomethylated phenolic resin of the nanoparticles were studied. The plugging properties of the Fe3O4/PAA hybrid nanoparticles were evaluated by filtration testing of the filter cakes at ambient temperature and 80 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43967.  相似文献   

10.
The Fe3O4/poly(lactide‐co‐glycolide) (PLGA) composites were prepared via a surface grafting technique. Initially, the poly(lactic acid) oligomer was synthesized and surface‐grafted to Fe3O4 nanoparticles. Then, the grafted Fe3O4 particles were compounded with PLGA matrix by a simple solution blending method. The grafted Fe3O4 particles presented enhanced compatibility with PLGA matrix and the composites indicated enhanced dynamic mechanical performance. Electrochemical tests showed that the Fe3O4/PLGA composite coating can help improve the impedance of magnesium samples by 100–300%, and the impedance of the metal may be tunable by altering the components ratio of LA/GA within PLGA matrix. The composites may have potential application for magnesium alloy used in degradable medical implants. POLYM. COMPOS., 37:1369–1374, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
This work analyzes the morphology and behavior of hybrid composites reinforced with carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). In order to avoid the weak interface of laminar nanofillers, GNPs were functionalized with amine groups. Different tendencies were observed as a function of the measured property. Storage modulus showed a synergic trend, being the stiffness of hybrid CNT/GNP/epoxy composites higher than the corresponding ones measured in neat epoxy composites reinforced with CNTs or GNPs. In contrast, the thermal and electrical conductivity increased with the nanofiller addition, the final value of the mentioned properties in the hybrid composites was strongly influenced by specific graphitic nanofiller. Neat GNP/epoxy composites showed the highest thermal conductivity, while neat CNT/epoxy composites presented the highest electrical conductivity. This behavior is explained by the observed morphology. All composites exhibited a suitable nanofiller dispersion. However, on hybrid GNP/CNT/epoxy composites, CNTs tend to be placed between nanoplatelets, forming bridges between nanoplatelets. This morphology implies a less effective electrical network, limiting the synergic effect in the properties, which requires percolation. In spite of this, the hybrid GNP/CNT/epoxy composites showed a better combination of properties than the neat composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46475.  相似文献   

12.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
A novel hybrid particles Srp@Fe3O4/OA, composed of phyllosilicate Serpentine (Srp), magnetic Fe3O4 and oleic acid (OA), has been explored via a two-step process. Then the as-prepared Srp@Fe3O4/OA particles were firstly mixed with bismaleimide resin (BMI) to constructe a series of Srp@Fe3O4/OA/BMI composites, the mechanical properties, tribological properties and thermal stability of the Srp@Fe3O4/OA/BMI composites are subsequently investigated. The characterization results indicate that the 0.3 wt% Srp@Fe3O4/OA/BMI composite shows the maximum impact strength (19.0 kJ·m?2) and minimum friction coefficient (0.21), higher 52.7% and lower 55% than those of the neat BMI resin, respectively. The significantly enhanced toughness and tribological performance of the Srp@Fe3O4/OA/BMI composites are mainly due to the increase of the free volume and the uniformly distribution of Srp@Fe3O4/OA, as well as the good interfacial adhesion between BMI matrix and Srp@Fe3O4/OA particles.  相似文献   

14.
Structure-tuned Fe3O4 and graphene composites were prepared using a facile graphene/acid assisted facile one-pot hydrothermal method. The structural characteristics of Fe3O4 can be tuned by adjusting the initial molar ratio between iron acetylacetonate and citric acid. The citric acid serves dual function as a reducing agent during the production of Fe3O4 nanoparticles (NPs), and as a bridging agent which under optimized conditions can result in mesoporous Fe3O4 nanospheres (NSs) self-assembled by numerous Fe3O4 NPs. The fabricated mesoporous Fe3O4 NSs and graphene composites were evaluated as potential anode materials for lithium ion batteries. These composites exhibit better electrochemical performance with high reversible capacity, good rate capability and cyclic stability derived from their unique mesoporous structural features.  相似文献   

15.
A methodology is described for the preparation of thermosensitive organic-inorganic hybrid microgels with functional Fe3O4 nanoparticles as the crosslinker and N-isopropylacrylamide (NIPAm) as the monomer. Magnetic Fe3O4 nanoparticles were first prepared via a redox reaction in aqueous solution and then modified with 3-(trimethoxysilyl)propylmethacrylate (TMSPMA) via the silanization. The bonding of multiple TMSPMA monomers on the surface of Fe3O4 nanoparticles renders them as crosslinker. Surfactant-free emulsion polymerization (SFEP) of NIPAm was then carried out with the presence of TMSPMA-modified Fe3O4 nanoparticles at 70 °C in aqueous solution, leading to the formation of thermosensitive PNIPAm-Fe3O4 hybrid microgels crosslinked with Fe3O4 nanoparticles. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), thermogravimetric analysis (TGA), dynamic light scattering (DLS) and physical properties measurement system (PPMS) were then used to characterize the resultant hybrid microgels. The experimental results show that the PNIPAm-Fe3O4 hybrid microgels were spherical in shape with a large size distribution and the Fe3O4 nanoparticles were randomly distributed inside the microgels. The PNIPAm-Fe3O4 hybrid microgels were thermosensitive, exhibiting a reversible swelling and deswelling behavior as a function of temperature. The PNIPAm-Fe3O4 hybrid microgels also show superparamagnetic behavior at room temperature (300 K).  相似文献   

16.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

17.
We have studied the temperature‐dependent transport and magnetic properties of the nanocomposites, containing varied amounts of CoFe2O4, NiFe2O4, and Fe3O4 nanoparticles embedded in the conducting poly(3,4‐ethylenedioxythiophene) or PEDOT matrix, in the temperature range 77–300 K. Resistivities of all the composites, including pure PEDOT follows the Mott VRH relation ρ = ρ0 T−1/4 over the studied temperature range. This suggests that hopping is the mechanism of transport in these systems. Plots of (lnρ − lnρ0)/A as a function of temperature for all the studied samples are found to collapse on a single curve. Although, the conduction mechanism does not change with nanoparticle inclusions in the polymer matrix, the hopping parameters change in the nanocomposites. Magnetic studies of ferrite nanoparticles and nanocomposites show signature of superparamagnetic blocking, with a distribution of particle size. The spin structure on the surface of any particle is different from that of the core. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
A functionalized multiwall carbon nanotube (MWCNT)–COOH/Fe3O4 hybrid was fabricated by co-precipitation method. Fe3O4 nanoparticles were stably attached to the surface of carboxyl groups (COOH). The presence of Fe3O4 nanoparticles and their surface conjugation to MWCNT have been confirmed by XRD, TEM and FT-IR techniques. Magnetic evaluation revealed a superparamagnetic character of the hybrid and therefore the attached Fe3O4 nanoparticles. The crystallite size (9 ± 3 nm), particle size (9 ± 2 nm) and magnetic domain size estimated for Fe3O4 are consistent with each other, which reveal the single crystalline character of the nanoparticles. Electrical conductivity and dielectric behavior have also been characterized by utilizing impedance spectroscopy up to 3 MHz for an isotherm line varying from 293 to 393 K by 10 K steps. Electrical characteristics and its complex dielectric approaches might be elucidated with the existence of a conventional tunneling conduction mechanism of temperature-independency. The AC conductivity of MWCNT–COOH/Fe3O4 hybrid could also be a consequence of the estimations of the universal dynamic response.  相似文献   

19.
In this work, using monodispersed sulfonated polystyrene (SPS) microspheres as carriers, FeCl3·6H2O and FeSO4·7H2O as precursors, NaOH as precipitant in the presence of graphene oxide (GO), SPS/Fe3O4/GO micro-nano composites were fabricated by a simple one-pot method employing an inverse coprecipitation in-situ compound technology. The SPS/Fe3O4/GO micro-nano composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffractometer, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms and vibrating sample magnetometer. The results show that the SPS/Fe3O4/GO micro-nano composites were fabricated with SPS as core, GO and Fe3O4 nanoparticles as shell. The SPS/Fe3O4/GO micro-nano composites had larger BET specific surface area, average pore width and micropore volume than the pure SPS microspheres. Meanwhile, the SPS/Fe3O4/GO micro-nano composites had superparamagnetism and hydrophilic property. The saturation magnetization (Ms) of the SPS/Fe3O4/GO micro-nano composites was 10.86 emu/g, which was enough to ensure the convenient magnetic separation of solid and liquid phase.  相似文献   

20.
The mechanical performance of short randomly oriented banana and sisal hybrid fiber reinforced polyester composites was investigated with reference to the relative volume fraction of the two fibers at a constant total fiber loading of 0.40 volume fraction (Vf), keeping banana as the skin material and sisal as the core material. A positive hybrid effect is observed in the flexural strength and flexural modulus of the hybrid composites. The tensile strength of the composites showed a positive hybrid effect when the relative volume fraction of the two fibers was varied, and maximum tensile strength was found to be in the hybrid composite having a ratio of banana and sisal 4 : 1. The impact strength of the composites was increased with increasing volume fraction of sisal. However, a negative hybrid effect is observed when the impact strength of the composites is considered. Keeping the relative volume fraction of the two fibers constant, that is, banana : sisal = 0.32 : 0.08 (i.e., 4 : 1), the fiber loading was optimized and different layering patterns were investigated. The impact strength of the composites was increased with fiber loading. Tensile and flexural properties were found to be better at 0.40 Vf. In the case of different layering patterns, the highest flexural strength was observed for the bilayer composites. Compared to other composites, the tensile properties were slightly higher for the composite having banana as the skin material and sisal as the core material. Scanning electron micrographs of the tensile and impact fracture surfaces of the hybrid composites having volume fraction 0.20 and 0.40 Vf were studied. The experimental tensile strength and tensile modulus of hybrid composites were compared with those of theoretical predictions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1699–1709, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号