首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
The future of consumer electronics depends on the capability to reliably fabricate nanostructures with given physical properties. Therefore, techniques to characterize materials and devices with nanoscale resolution are crucial. Among these is magnetic force microscopy (MFM), which transduces the magnetic force between the sample and a magnetic oscillating probe into a phase shift, enabling the locally resolved study of magnetic field patterns down to 10 nm. Here, the progress done toward making quantitative MFM a common tool in nanocharacterization laboratories is shown. The reliability and ease of use of the calibration method based on a magnetic reference sample, with a calculable stray field, and a deconvolution algorithm is demonstrated. This is achieved by comparing two calibration approaches combined with numerical modeling as a quantitative link: measuring the probe's effect on the voltage signal when scanning above a nanosized graphene Hall sensor, and recording the MFM phase shift signal when the probe scans across magnetic fields produced by metallic microcoils. Furthermore, in the case of the deconvolution algorithm, it is shown how it can be applied using the open‐source software package Gwyddion. The estimated magnetic dipole approximation for the most common probes currently in the market is also reported.  相似文献   

3.
Magnetic van der Waals (vdW) materials are the centerpiece of atomically thin devices with spintronic and optoelectronic functions. Exploring new chemistry paths to tune their magnetic and optical properties enables significant progress in fabricating heterostructures and ultracompact devices by mechanical exfoliation. The key parameter to sustain ferromagnetism in 2D is magnetic anisotropy—a tendency of spins to align in a certain crystallographic direction known as easy‐axis. In layered materials, two limits of easy‐axis are in‐plane (XY) and out‐of‐plane (Ising). Light polarization and the helicity of topological states can couple to magnetic anisotropy with promising photoluminescence or spin‐orbitronic functions. Here, a unique experiment is designed to control the easy‐axis, the magnetic transition temperature, and the optical gap simultaneously in a series of CrCl3?xBrx crystals between CrCl3 with XY and CrBr3 with Ising anisotropy. The easy‐axis is controlled between the two limits by varying spin–orbit coupling with the Br content in CrCl3?x Brx. The optical gap, magnetic transition temperature, and interlayer spacing are all tuned linearly with x. This is the first report of controlling exchange anisotropy in a layered crystal and the first unveiling of mixed halide chemistry as a powerful technique to produce functional materials for spintronic devices.  相似文献   

4.
Physical patterns represent potential surface cues for promoting osteogenic differentiation of stem cells and improving osseointegration of orthopedic implants. Understanding the early cell–surface interactions and their effects on late cellular functions is essential for a rational design of such topographies, yet still elusive. In this work, fluidic force microscopy (FluidFM) and atomic force microscopy (AFM) combined with optical and electron microscopy are used to quantitatively investigate the interaction of preosteoblasts with 3D-printed patterns after 4 and 24 h of culture. The patterns consist of pillars with the same diameter (200 nm) and interspace (700 nm) but distinct heights (500 and 1000 nm) and osteogenic properties. FluidFM reveals a higher cell adhesion strength after 24 h of culture on the taller pillars (32 ± 7 kPa versus 21.5 ± 12.5 kPa). This is associated with attachment of cells partly on the sidewalls of these pillars, thus requiring larger normal forces for detachment. Furthermore, the higher resistance to shear forces observed for these cells indicates an enhanced anchorage and can be related to the persistence and stability of lamellipodia. The study explains the differential cell adhesion behavior induced by different pillar heights, enabling advancements in the rational design of osteogenic patterns.  相似文献   

5.
Paddle-type and double-sided nanostructures have much potential for measuring the angular speed in rotary systems and aerospace applications. While most investigations in the literature have concentrated on the electromechanical performance of conventional beam-type nanostructures, few researchers have addressed the performance of these systems. The pull-in instability of the cantilever paddle-type and double-sided sensors in the presence of the centrifugal force have been investigated. The nonlinear governing equations are solved and the obtained results are compared with the numerical solution. The influences of the van der Waals force, geometric parameters, angular speed, and size phenomenon on the instability performance have been demonstrated.  相似文献   

6.
A self-assembled monolayer of CF3(CF2)3(CH2)11NH2 atop the (001) surface of the high-temperature superconductor YBa2Cu3O7-x was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 Å square √2 × √2R45° unit cell previously predicted for alkyl amines by molecular modeling [J.E. Ritchie, C.A. Wells, J.-P. Zhou, J. Zhao, J.T. McDevitt, C.R. Ankrum, L. Jean, D.R. Kanis, J. Am. Chem. Soc. 120 (1998) 2733]. Additionally, the 3D structure of an analogous Langmuir monolayer of CF3(CF2)9(CH2)11NH2 on water was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed.  相似文献   

7.
We present the preliminary results of temperature and frequency dependent dielectric measurements on Ba(Co1/3Nb2/3)O3 (BCN) thin films. These films were prepared on indium tin oxide (ITO) coated glass substrates by the pulse laser deposition (PLD) technique. It exhibits single-phase hexagonal symmetry. These films were irradiated with Ag15+ (200 MeV) and O7+ (100 MeV) beams at the fluence 1 × 1011, 1 × 1012, and 1 × 1013 ions/cm2. On irradiating these films, its dielectric constant (?′) and dielectric loss (tan δ) parameters improve compared to un-irradiated film. Compared to O7+ irradiation induced point/cluster defects Ag15+ induced columnar defects are more effective in reducing/pinning trapped charges within grains. The present paper highlights the role of swift heavy ion irradiation in engineering the dielectric properties of conductive samples to enable them to be useful for microwave device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号