首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999  相似文献   

2.
BACKGROUND: The development of carriers with biocompatible surfaces are required to meet the needs in animal cell culture. In this work, poly (ethylene terephthalate) (PET) fibrous scaffold surfaces were chemically modified to introduce diethylaminoethyl (DEAE) groups. A packed‐bed bioreactor with DEAE‐conjugated PET fibrous scaffolds was investigated for continuous production of HBsAg by r‐CHO cells. RESULTS: The changes of surface properties were characterized by surface hydrophilicity, Attenuated total reflectance (ATR) analysis, element measurement, and scanning electron microscopy. The results showed that this treatment could improve surface hydrophilicity and roughness. Using an r‐CHO cell line as model cells, the feasibility of the DEAE‐conjugated PET fibrous scaffold in animal cell culture was evaluated by means of cell attachment efficiency measurement, MTT (3‐(4,5)‐dimethylthiathiazo(‐z‐yl)‐3,5‐di‐phenytetrazoliumromide) assay, and scanning electron microscopy observation. Enhancement of cell attachment and proliferation was exhibited in the cell culture on DEAE‐conjugated PET fibrous scaffolds. r‐CHO cells were cultured for continuous HBsAg production in a packed‐bed bioreactor with DEAE‐conjugated PET fibrous scaffolds. A cell density of 1.2 × 107 cells mL?1 working volume, cell viability of 92.8% and maximum HBsAg concentration of 3.1 mg L?1 were achieved. CONCLUSION: The packed‐bed bioreactor system with DEAE‐conjugated PET fibrous scaffolds has the potential for industrial animal cell culture application. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
In this study, a composite of poly (ethylene terephthalate) (PET) fabric and soy protein isolate (SPI) hydrogel loaded with gabapentin was developed. For covalent attachment of SPI on the surface of PET fabric, graft polymerization of acrylic acid (AA) on the surface of PET fabric was performed and then carboxyl groups available in the structure of AA were activated using EDAC and then SPI was coated on the surface of PET fabric. The results revealed appropriate connection between hydrogel and modified fabric. The hydrogel was characterized by swelling test and the drug release behavior was investigated. It was found that the casting temperature affects the swelling ratio of the hydrogel and an appropriate release profile of the drug was observed. The surface of fabric was characterized by contact angle measurement, electron microscopy, and infrared spectroscopy. In vitro cell culture study was performed using NIH 3T3 mouse fibroblasts to investigate the biocompatibility of final composite and MTS results along with morphology of cells on the surface of PET fabric coated with SPI revealed the biocompatibility of final product and no cell cytotoxicity was observed in modified PET fabric.  相似文献   

4.
BACKGROUND: Dextran, a bacterial polysaccharide, has been reported to be as good as poly(ethylene glycol) in its protein‐rejecting and cell‐repelling abilities. In addition, the multivalent nature of dextran is advantageous for surface grafting of biologically active molecules. We report here a method to photochemically bind dextran hydrogel films to aminated poly(ethylene terephthalate) (PET) surfaces in aqueous media using a heterobifunctional crosslinker, 4‐azidobenzoic acid. In order to achieve this, dextran was first functionalized with the crosslinker using carbodiimide chemistry followed by photo‐crosslinking and immobilization onto the nucleophile‐rich aminated PET surfaces. RESULTS: The presence of the immobilized dextran on PET was verified by attenuated total‐reflection Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy and contact angle measurements. The grafted surface was highly hydrophilic due to the heavily hydrated polysaccharide network on the surface as demonstrated by the near zero water contact angle. CONCLUSION: A photochemical method for surface immobilization of dextran onto aminated PET using aryl azide chemistry is a facile technique to generate highly hydrophilic and more hemocompatible surfaces. The aryl nitrenes generated by photolysis produce a metastable, electron‐deficient intermediate, azacycloheptatetraene, which is believed to be responsible for the simultaneous crosslinking of dextran and its immobilization onto the aminated PET surface. The aryl azide chemistry reported here for dextran could be useful as a versatile technique for surface modification of other nucleophile‐rich polymers to create dextran‐ or similar polysaccharide‐immobilized surfaces. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
Surface modification of poly(ethylene terephthalate) (PET) film by an argon (Ar) plasma was investigated as a function of the distance from the Ar plasma zone. Changes in distance between the PET film and the Ar plasma zone had a strong influence on the surface modification of the film. The direct Ar plasma treatment (distance between the PET film and Ar plasma zone = 0 cm) was effective in hydrophilic surface modification, but heavy etching reactions occurred during the modification. On the other hand, the remote Ar plasma treatment (distance between the PET film and Ar plasma zone = 80 cm) modified the PET film surfaces to be hydrophilic without heavy etching reactions, although the hydrophilicity of the PET was lower than that by the direct Ar plasma. The remote Ar plasma treatment was distinguished from the direct Ar plasma treatment from the viewpoint of degradation reactions. The remote Ar plasma treatment rather than the direct Ar plasma treatment was an adequate procedure for surface modification and caused less polymer degradation on the film surface. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 808–815, 2001  相似文献   

6.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

7.
In this study, we investigated the effect of tensile properties of poly(ethylene naphthalate) (PEN) yarns on the ballistic performance of woven and nonwoven soft and composite armors. The results of ballistic tests of PEN armors were compared with Kevlar 49 armors as a reference. Based on these results, the Cunniff's equation was revised by removing the fiber elongation at break to predict the relationship between tensile properties and ballistic performances of PEN fibers. The calculations showed that by increasing tenacity of PEN fibers from 8.5 g/den (commercial product) to 12.5 g/den (strongest up to date PEN fibers produced by a novel melt spinning process discovered by our research group), the weight ratio of PEN to Kevlar 49 decreased from 1.8 to 1.35 with the same ballistic performance. Contrary to the results of the soft armors, composite armors made of high modulus PEN woven fabric showed a 17% lower ballistic resistance compared to the composite armor made of low modulus PEN woven fabric. The results of ballistic tests indicated that high tenacity PEN fibers produced in this research could have potential in soft and composite armors, and high velocity impact applications or improve performance of PEN in its current applications. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Hydrophobic zinc oxide (ZnO) nanoparticles were successfully prepared by a one‐step precipitation reaction in an aqueous solution of zinc sulfate and sodium hydroxide with stearic acid as the modifying agent. Poly(ethylene terephthalate) (PET)/ZnO nanocomposites were prepared by further in situ polymerization of purified terephthalic acid, ethylene glycol and the ZnO nanoparticles. The surface modification of ZnO and the microstructure and properties of the nanocomposites were investigated using relative contact angle measurements, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission and scanning electron microscopies, thermogravimetric analysis and differential scanning calorimetry. Measurements of relative contact angle indicated that the surface‐treated ZnO was hydrophobic. Compared to the nanocomposite filled with unmodified ZnO, a significant improvement in thermal stability and crystallinity was observed with the addition of 2 wt% surface‐treated ZnO. The experimental results also suggested that the properties of the nanocomposites were correlated with the dispersion of ZnO in PET and the interfacial interactions between ZnO and PET matrix. © 2012 Society of Chemical Industry  相似文献   

9.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation.  相似文献   

10.
A mathematical model for solid-state polymerization of poly(ethylene terephthalate) was developed. The effects of temperature and chain entanglement on chain mobility were considered to estimate the rate constants of chemical reactions. The diffusivities of volatile byproducts could be determined using the free volume theory.13,14 The model predictions were validated with experimental data reported in the literature. In addition, assuming that the concentration profiles of volatile byproducts in spherical particles are described by a sinusoidal function, the mass transfer rate of the byproducts at a given time could be derived as an ordinary differential equation that can be easily treated. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:837–846, 1998  相似文献   

11.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

12.
Acrylic acid (AA) was grafted onto the surface of poly(ethylene terephthalate) (PET) fabric after having short-time corona-discharge treatment (CDT) in an atmosphere in the presence of the initiator. The effect of N,N-dimethylformamide (DMF) pretreatment time, CDT time, graft copolymerization time and temperature, concentration of AA, and the content of initiator on graft yield of PET fabric was discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1161–1164, 1999  相似文献   

13.
14.
BACKGROUND: Peroxidation of a poly(ethylene terephthalate) (PET) surface clears the path to the formation of biospecific polymeric layers on it. The goal of this work was the modification of a PET surface with oligoperoxides with further grafting of dextran macromolecules to this peroxidated surface. RESULTS: Novel oligoperoxides with a good affinity to PET were synthesized. They are capable of attaching to the PET surface, due to the decomposition of peroxide groups via the formation of free radicals. The alterations in surface energy and its components as a result of surface modification as well as changes in topography of the PET surface were determined. The degree of modification of the PET surface can reach 68% and depends on the following: the method of oligoperoxide and dextran deposition; the concentration of both oligoperoxide and dextran in the initial solution; and the temperature at which the modification is carried out. CONCLUSION: A new method of PET surface activation has been developed. The attachment of dextran macromolecules to modified PET surfaces is confirmed. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Poly(vinyl alcohol) (PVA) hydrogels have shown potential applications in bionic articular cartilage due to their tissue-like viscoelasticity, good biocompatibility and low friction. However, their lack of adequate mechanical properties is a key obstacle for PVA hydrogels to replace natural cartilage. In this study, poly(ethylene glycol) (PEG) and glycerol were introduced into PVA, and a PVA/PEG–glycerol composite hydrogel was synthesized using a mixing physical crosslinking method. The mechanical properties, hydrophilicity and tribological behavior of the PVA/PEG–glycerol hydrogel were investigated by changing the concentration of glycerol in PEG. The results showed that the tensile strength of the hydrogel reached 26.6 MPa at 270% elongation at break with 20 wt% of glycerol plasticizer, which satisfied the demand of natural cartilage. In addition, the excellent hydrophilicity of glycerol provides good lubricating properties for the composite gel under dry friction. Meanwhile, self-healing and cellular immunity assays demonstrated that the composite gel could have good self-healing ability and excellent biocompatibility even in the absence of external stimuli. This study provides a new candidate material for the design of articular cartilage, which has the potential to facilitate advances in artificial joint cartilage repair. © 2022 Society of Industrial Chemistry.  相似文献   

16.
The molecular structure of the copolyester formed through the interchange reaction in poly(ethylene terephthalate)/poly(butylene terephthalate) blends was investigated with 13C-NMR spectroscopy. The molar fractions of heterolinkage triads in the copolyesters were lower than the values calculated by Bernoullian statistics; this indicates that the sequence of heterolinkages was far from a random distribution at the initial stage of the interchange reaction. However, the randomness increased and the number-average sequence length decreased with reaction time. The solubility of the blend decreased with increasing sequence length, resulting from the formation of block copolymers with long sequence lengths at the initial stage of the interchange reaction. The solubility of the copolyester formed by a dibutyltin dilaurate (DBTDL)-catalyzed reaction was higher than that of the copolyester formed by a titanium tetrabutoxide-catalyzed reaction; this is related to the fact that alcoholysis prevailed in the DBTDL-catalyzed reaction. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 159–168, 2001  相似文献   

17.
The melting behaviour and the morphology of poly(ethylene terephthalate) crystallized from the melt are reported. In general, dual or triple melting endotherms are seen, and single endotherms are seen when the samples are crystallized above 215°C for long times. The location of the uppermost endotherm was found to be constant below Tc = 230°C, and above that temperature the location depends on Tc. Therefore, we have shown that samples of PET which are crystallized above Tc = 230°C contain perfect crystals only; below Tc = 230°C, they contain perfect and imperfect crystals. Scanning electron microscopy showed that the perfect crystals are the dominant lamellae in the spherulitic structure, while the imperfect crystals are the subsidiary lamellae in the spherulitic structure, The amorphous regions are located between individual lamellae.  相似文献   

18.
This study deals with the effects of pH and neutral salts on the adsorption of PET fiber with four kinds of poly(ethylene glycol terephthalate) condensated from dimethyl terephthalate (DMT) and poly(ethylene glycol) (PEG). The surface properties of the aqueous solution, the contact angle of polyol‐treated PET fabrics, and its parameters were also discussed. The pH of the solution or the adding of neutral salt in the polyol solution largely affected the contact angle of polyol‐treated PET fabrics as well as the surface tension of the solution. A lower pH of the polyol solution or adding neutral salts in the solution showed a lower surface tension and a lower contact angle that resulted in a better adsorption between polyol and poly(ethylene terephthalate) fibers. The lower pH of the solutions and a higher valence of the added neutral salt in the solution showed a largely positive effect on the adsorption parameters, and the order of effectiveness is Al2(SO4)3 > MgSO4 > Na2SO4.  相似文献   

19.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

20.
Interest in protection against solar ultraviolet radiation (UVR) among the general public in the world has been increasing steadily. Poly(ethylene terephthalate) (PET) was blended with UVR‐protection agents and was spun into modified fibers to provide the property of UVR protection. Investigation of this property using a UV spectrophotometer showed that the modified PET fabrics could be resistant to UVR more than 90% in the UV‐B band. The treatment of aqueous alkali on the surface of the fibers to improve the comfortable feel had little influence on the property of UVR protection. Scanning electron microscopy was employed to observe the surface morphology of the fibers. Also, the modified fibers had good heat insulation property and the mechanical properties of the fibers were measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1180–1185, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号