首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface tension of a series of poly(ethylene glycol)-octyl sulfosuccinates at different temperatures was measured, and the interfacial properties were investigated in the absence and presence of inorganic salts. Surface tension results indicate that critical micelle concentration (CMC) values of five surfactants (C8-PEG200, C8-PEG400, C8-PEG600, C8-PEG800, and C8-PEG1000) decrease as the molecular weight of polyethylene glycol (PEG) segments and the experimental temperature increases. The surface activity of the C8-PEG series changes with temperature, and the surface tension at the CMC (γCMC) of the C8-PEG series decreases initially and then increases as the PEG molecular weight increases. This behavior may be attributed to the dehydration of the surfactant molecules, resulting in the change of hydrophile–lipophile balance for the different EO numbers in the surfactant molecules, which form a different surface energy film at the air–water interface. Negative ΔGm indicates that the micellization process of these surfactants is spontaneous and an entropically driven process. For the water/alkane interface, these surfactants have low interfacial activity. The interfacial tension (IFT) between these surfactants and alkanes increases first and then decreases with the increase in the molecular weight of PEG segments. After the addition of salt, the interfacial activity of the investigated surfactants increases significantly. The IFT between C8-PEG800 and 10–12 alkanes and between C8-PEG1000 and 12–16 alkanes reaches a low IFT magnitude of 10−2 mN m−1 in the presence of 0.5% CaCl2 or the mixed inorganic salts 0.5% NaCl+0.5% CaCl2.  相似文献   

2.
Low interfacial tension (IFT) drainage and imbibition are effective methods for improving oil recovery from reservoirs that have low levels of oil or are tight (i.e., exhibit low oil permeability). It is critical to prepare a high efficient imbibition formula. In this work, a novel 2,4,6-tris(1-phenylethyl)phenoxy polyoxyethylene ether hydroxypropyl sodium sulfonate (TPHS) surfactant was synthesized and evaluated for imbibition. Its structure was confirmed by Fourier transform infrared spectroscopy and the interfacial tension (IFT) of the crude oil/0.07% TPHS solution was 0.276 mN/m. When 0.1 wt% TPHS was mixed with 0.2 wt% alpha olefin sulfonate (AOS), the IFT was lowered to 6 × 10−2 mN/m. The synergy between nanoparticles (NPs) and TPHS/AOS mixed surfactant was studied by IFT, contact angle on sandstone substrates, zeta potential, and spreading dynamics through microscopic methods. The results show that the surfactant likely adsorbs to the NP surface and that NP addition can help the surfactant desorb crude oil from the glass surface. With the addition of 0.05 wt% SiO2 NPs (SNPs), the imbibition oil recovery rate increased dramatically from 0.32%/h to 0.87%/h. The spontaneous imbibition recovery increased by 4.47% for original oil in place (OOIP). Compared to flooding by TPHS/AOS surfactant solutions, the oil recovery of forced imbibition in the sand-pack increased by 12.7% OOIP, and the water breakthrough time was delayed by 0.13 pore volumes (PV) when 0.05% SNPs were added. This paper paves the way for enhanced oil recovery in low-permeability sandstone reservoirs using novel TPHS/AOS surfactants and SNPs.  相似文献   

3.
The effect of synthetic surfactant molecular structure on the dynamic interfacial tension (DIFT) behavior in Na2CO3/surfactant/crude oil was investigated. Three surfactants, a nonionic (iC17(EO)13), an alcohol propoxy sulfate (C14–15(PO)8SO4), and sodium dodecyl sulfate (SDS) were considered in this study. Sodium tripolyphosphate (STPP) was added to ensure complete compatibility between brine and Na2CO3. In Na2CO3/iC17(EO)13/oil and Na2CO3/C14–15(PO)8SO4/oil systems, a strong synergistic effect for lowering the dynamic interfacial tension was observed, in which the dynamic IFT are initially reduced to ultralow transient minima in the range 1.1 × 10?3–6.6 × 10?3 mNm?1 followed by an increment to a practically similar equilibrium value of 0.22 mNm?1 independent of Na2CO3 concentration (for iC17(EO)13) and to decreasing equilibrium values with increasing alkali concentrations (for C14–15(PO)8SO4). The observed difference in the equilibrium IFT for the two systems suggest that in both systems, the mixed interfacial film is efficient in reducing the dynamic interfacial tension to ultralow transient minima (~10?3 mNm?1) but the mixed film soap‐iC17(EO)13 is much less efficient than the mixed film soap‐C14–15(PO)8SO4 in resisting soap diffusion from the interface to the bulk phases. In both systems, the synergism was attributed, in part, to the intermolecular and intramolecular ion–dipole interactions between the soap molecules and the synthetic surfactant as well as to some shielding effect of the electrostatic repulsion between the carboxylate groups by the nearby ethylene oxide (13 EO) and propylene oxide (8 PO) groups in the mixed interfacial monolayer. SDS surfactant showed a much lower synergism relative to iC17(EO)13 and C14–15(PO)8SO4, probably due to the absence of ion–dipole interactions and shielding effect in the mixed interfacial layer at the oil–water interface.  相似文献   

4.
In this study, interfacial tension (IFT) is measured between brine and crude oil (a sample of heavy oil from an Iranian oil reservoir) in the presence of two nonionic surfactants, KEPS 80 (Tween 80) and Behamid D, at different concentrations in order to optimize the concentrations of the surfactants. The surface response method is used to design the IFT measurement experiments. The experimental design and optimization is performed using the IFT as an objective function and temperature, concentration, and time as independent variables. In addition to the IFT measurement, various experiments such as stability tests of the surfactants in NaCl brine solutions, adsorption experiments on the carbonated rock surface, and phase behavior tests are performed to investigate the behavior of KEPS 80 and Behamid D in the enhanced oil recovery process. At the end, a model using the response surface statistical technique is designed for optimization of the concentrations of the surfactants, and a surfactant molecular migration mechanism is used for explanation of the dynamic IFT variation versus time. In the case of IFT experiments, the effect of surfactant concentration (at 1000, 3000, and 5000 ppm) on the dynamic IFT is investigated. The experiments are performed at four temperatures (25, 40, 50, and 67°C). The results show that the oil–brine IFT values can be reduced to about 4 mN m−1 in the presence of Behamid D and to about 1 mN m−1 in the presence of KEPS 80 at low concentrations.  相似文献   

5.
The interfacial and micellization behaviors of binary mixtures of two gemini cationic surfactants and conventional the cetyl trimethyl ammonium bromide surfactant were studied at various molar ratios. From the equilibrium surface tension measurements, the critical micelle concentrations (CMC) data were obtained as functions of the composition. Values of the CMC were analyzed according to the regular solution model developed by Rubingh for mixed micelles. Two interaction parameters were obtained for each system, the interaction at the interface, and in the micellar phase. The results showed that micellization and adsorption properties of the studied mixed systems depend on the spacer chain lengths of the gemini surfactants and their ratio in the mixed systems.  相似文献   

6.
The effects of crude oil acid number and brine concentration on the interfacial behavior of caustic/crude oil systems were investigated. The effect of increased brine concentration was generally to increase the minimum interfacial tension (IFT) while low IFT values were retained for longer periods of time. Varying the crude oil acid number caused the shape of the IFT versus time curve to change, while the minimum IFT remained constant. These combined results imply that Lagmuir and not Henry soption (adsorption/desorption) kinetics were operative

A phenomenological surface phase model for the IFT behavior of caustic/crude oil systems is proposed which incorporates Langmuir kinetics. The model takes into account interfacial activities of the acidic components in the crude and the detailed chemistry of the oil phase, the water phase, and the interface. To allow for realistic comparison of model results with interfacial tensiometer data, drastic interfacial volume changes which accompany the transient interfacial tensions in the system are taken into account.  相似文献   

7.
The effects of different types of polymers, partially hydrolyzed polyacrylamide (HPAM) and hydrophobically modified polyacrylamide (HMPAM), on dynamic interfacial tensions (IFTs) of surfactant/model oil systems have been investigated by the spinning drop method in this article. Two anionic surfactants, 1,2‐dihexyl‐4‐propylbenzene sulfonate (366), 1,4‐dibutyl‐2‐nonylbenzene sulfonate (494) and an anionic–nonionic surfactant octyl‐[ω‐alkyloxy‐poly(oxyethylene)]yl‐benzene sulfonates (828) with high purity were selected as model surfactants. The influences of polymer concentration on IFT were expounded. It was found that the addition of polymer mostly results in increasing IFT because the interfacial molecular arrangement is modified owing to the interaction between polymer and surfactants. For HPAM, the polymer chains will enter the surfactant adsorption layer to form mixed‐adsorption layer. Therefore, HPAM shows strong effect on surfactant molecules with large size, such as 366. Conversely, surfactants can interact with the hydrophobic blocks of HMPAM and form mixed micelle‐like associations at interface. As a result, HMPAM shows more impact on IFT of 494 due to small steric hindrance for the formation of interfacial associations. This mechanism has been ensured by 828 molecules with two long alkyl chains. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40562.  相似文献   

8.
Measurements of surface tension were carried out for several aqueous solutions of different amphiphilic systems. This research studied the interaction between two polymeric resins (more structure definition) (PR) and nonyl phenol ethoxylates (NP) with degrees of ethoxylation varying from 10 to 20 ethylene oxide groups. The results show that in mixtures of PR and NP20EO, the adsorption on the surface was lower, with the molecules tending to remain within the liquid. On the other hand, mixtures of PR and NP10EO have resulted in greater surface adsorption. The effect of the added alcohols was to tune the interfacial activity of the PR as function of the PR and alcohol concentrations. The general tendency of the surface tension curves to decrease with increasing PR/alcohol concentration in solutions was not significantly modified with the addition of alcohols; however, the surface tension values changed due to the addition of alcohols and a model is proposed to explain these changes, as they depend on both alcohol chain length and the PR/alcohol concentration. An emulsion stability test was performed on polymeric resins–surfactant systems to determine the correlation between their surface properties. Nonionic surfactants present in these mixtures are mainly responsible for the emulsion stability. It was concluded that mixtures of the less hydrophilic PR (PR_B) with NP10EO have good interfacial properties, including a high interfacial concentration and a low critical micellar concentration.  相似文献   

9.
The contact angles of saturated calcium dodecanoate (CaC12) solutions containing a second subsaturated surfactant on a precipitated CaC12 surface were measured by using the drop shape analysis technique. The subsaturated surfactants used were anionic sodium dodecylsulfate (NaDS), anionic sodium octanoate (NaC8), and nonionic nonylphenol polyethoxylate (NPE). Comparing at the critical micelle concentration (CMC) for each surfactant, NaC8 was the best wetting agent, followed by NaDS, with NPE as the poorest wetter (contact angles of 320, 420, and 620, respectively). Surface tension at the CMC increased in the order NaC8<NPE<NaDS, and subsaturated surfactant adsorption increased in the order NPE≪NaDS (1.4 vs. 84 μmole/g); adsorption of the NaC8 was not measurable. Interfacial tension (IFT) reduction at the solid-liquid interface due to subsaturated surfactant adsorption is an important contribution to contact angle reduction, in addition to surface tension reduction at the air-water interface. Surfactant adsorption onto the soap scum solid is crucial to solid-liquid IFT reduction and to good wetting. The fatty acid was the best wetting agent of the three surfactants studied, probably because calcium bridging with the carboxylate group synergizes surfactant adsorption onto the solid of the higher molecular weight soap. NaCl added to NaDS surfactant results in depressed CMC, lower surface tension at the CMC, decreased NaDS adsorption onto the solid, and decreased reduction in solid-liquid IFT. The contact angle is not dependent on the NaCl concentration for NaDS. The NaCl causes an increased tendency to form monolayers, which decrease air-water surface tension, but a decreased tendency to form adsorbed aggregates on the solid; the two trends offset each other, so wettability is not affected by added salt. The Zisman equation does not describe the wetting data for these systems well except for NaDS, further emphasizing the danger of ignoring solid-liquid IFT reduction in interpreting wetting data in these systems.  相似文献   

10.
A study of nonideal behavior in the formation of mixed monolayers at the oil-water interface was performed for a nonionic-nonionic surfactant system. Mixtures containing alkylpolyglucoside and alkylsorbitan derivatives were investigated. As the oily phase, colza-rapeseed and olive oils were used. To evidence a synergetic effect in the interfacial tension reduction in the oil-water-surfactant-cosurfactant system, the model based on the regular solution theory was modified for the case of both surfactants being soluble in the water as well as in the oily phase. For determination of the condition for the synergism and the point of the maximum synergetic effect, the molar fraction in the mixed monolayer X s and the interaction parameter βs were calculated, using experimental data for the interfacial tension and for the partition coefficient. A set of general equations was developed, to allow the analysis of a mixture containing a water-soluble and an oil-soluble surfactant. The equations are applied according the characteristics of studied quaternary systems. The mathematical model was tested with literature data, and the results were compared with those obtained from the phase diagram of oil-water-mixed surfactant system. The systems water-vegetable oil-alkylpolyglucoside-alkylsorbitan show a maximum synergetic effect at molar fractions between 0.85 and 0.90. The liquid-liquid interfacial tension and partition coefficient data were used to calculate the point of the maximum synergetic effect, i.e., the surfactant-cosurfactant ratio, which ensures the interfacial tension miniumum. The dramatic reduction in interfacial tension due to the presence of the surfactant mixture at the interface at the point of the synergism maximum is related to the formation of three-phase and single-phase microemulsions. The results were applied to obtain single-phase microemulsion in water-vegetable oil-alkylpolyglucoside-alkylsorbitan systems.  相似文献   

11.
Inspired by the concept of lipophilic and hydrophilic linkers, extended surfactants have been proposed as highly desirable candidates for the formulation of microemulsions with high solubilization capacity and ultralow interfacial tension (IFT), especially for triglyceride oils. The defining characteristic of an extended surfactant is the presence of one or more intermediate-polarity groups between the hydrophilic head and the hydrophobic tail. Currently only limited information exists on extended surfactants; such knowledge is especially relevant for cleaning and separation applications where the cost of the surfactant and environmental regulations prohibit the use of concentrated surfactant solutions. In this work, we examine surfactant formulations for a wide range of oils using dilute solutions of the extended surfactant classes sodium alkyl polypropyleneoxide sulfate (R-(PO) x −SO4Na), and sodium alkyl polypropyleneoxide-polyethyleneoxide sulfate (R-(PO) y -(EO) z −SO4Na). The IFT of these systems was measured as a function of electrolyte and surfactant concentration for polar and nonpolar oils. The results show that these extended surfactant systems have low critical micelle concentrations (CMC) and critical microemulsion concentrations (CμC) compared with other surfactants. We also found that the unique structure of these extended surfactants allows them to achieve ultralow IFT with a wide range of oils, including highly hydrophobic oils (e.g., hexadecane), triolein, and vegetable oils, using only ppm levels of these extended surfactants. It was also found that the introduction of additional PO and EO groups in the extended surfactant yielded lower IFT and lower optimum salinity, both of which are desirable in most formulations. Based on the optimum formulation conditions, it was found that the triolein sample used in these experiments behaved as a very polar oil, and all other vegetable oils displayed very hydrophobic behavior. This unexpected triolein behavior is suspected to be due to uncharacterized impurities in the triolein sample, and will be further evaluated in future research.  相似文献   

12.
A new series of sulfobetaine surfactants with double-chain single-head structure were derived from 1,3-dialkyl glyceryl ethers and their performances in reducing Daqing crude oil/connate water interfacial tension (IFT) in the absence of alkali were studied. With a large hydrophilic head group and double hydrophobic chains, these surfactants are efficient at reducing crude oil/connate water IFT. Those with didecyl and dioctyl are good hydrophobic surfactants that can reduce Daqing crude oil/connate water to ultra-low IFT by mixing with a small molar fraction of various conventional single-chain hydrophilic surfactants, such as α-olefin sulfonates, dodecyl polyoxyethylene (10) ether, and cetyl dimethyl hydroxypropyl sulfobetaine. The asymmetric double-chain sulfobetaine derived from 1-decyl-3-hexyl glyceryl ether can reduce Daqing crude oil/connate water IFT to ultra-low solely over a wide concentration range (0.03–10 mM or 0.0017–0.58 wt.%), which allows for use of an individual surfactant instead of mixed surfactants to avoid chromatographic separation in the reservoir. In addition, formulations rich in sulfobetaine surfactants show low adsorption on sandstone, keeping the negatively charged solid surface water-wet, and forming crude oil-in-water emulsions. These new sulfobetaine surfactants are, therefore, good candidates for surfactant-polymer flooding free of alkali.  相似文献   

13.
The dynamic interfacial tension (IFT) of betaine and betaine/polyether‐nonionic surfactant‐mixed systems against hydrocarbons, kerosene, and crude oil–water was studied using a spinning‐drop tensiometer. The influence of average molecular weight of polyether‐nonionic surfactants on IFT of mixed solutions was investigated. On the basis of the experimental results, one can find that it is difficult to reach the ultralow IFT value for betaine solution against hydrocarbon and kerosene because of the mismatch between the hydrophobic and hydrophilic groups. After purification, kerosene still contains a small amount of carboxyl groups, which can exert a synergistic effect on surfactants resulting in a lower IFT. The IFT of betaine and mixtures against Daqing crude oil can reach an ultralow value because of the mixed adsorption of surfactant and petroleum soap molecules. For mixed solutions, with the increasing concentration of added polyether, the decrease of petroleum soaps at the oil–water interface results in the destruction of synergistic effects.  相似文献   

14.
混合流体汽液及液液界面张力分子模型   总被引:3,自引:0,他引:3  
应用定标粒子理论表面张力方程以及 vd W- 1型混合规则 ,计算了混合流体的表面张力 ,对 64个二元体系 ,7个三元体系的表面张力计算平均相对偏差为 0 .80 %和 2 .43% ;应用 Boudh- Hir和 Mansoori提出的部分互溶体系的界面张力模型 ,给出了硬球直径的确定方法 ,对 37个部分互溶二元含水体系的界面张力进行了计算 ,绝对平均偏差为 1 .5m N/m,相对平均偏差为 8.9% ,计算精度满意。  相似文献   

15.
The interfacial tensions (IFT) of four low molecular weight groups of ethoxylated octylphenol-, dodecylphenol-, tetradecylphenol- and hexadecyl-phenol—formaldehyde polymeric surfactants were determined using the spinning drop method. Some noteworthy features of the interfacial behaviour of dilute aqueous solutions of 16 of these compounds and homologous hydrocarbons are discussed. An important feature is that these surfactants behave similarly to monomeric ones in their hydrocarbon scan, that is they have a minimum IFT value against a particular member of a homologous hydrocarbon series. The magnitudes of the tension at minimum (γmin) values obtained in this study are of the order of ‘ultralow’ (10?2-10?3 mNm?1). The nmin values of these polymeric nonionic surfactants decrease with increasing hydrophilicity, that is decrease with the increase of ethylene oxide units condensed per mole of alkylphenol unit in the polymeric surfactants studied. In this case, the downward shift in nmin is smaller and apparently not linearly related to the number of EO units. Increasing the hydrophobicity of these polymeric nonionics, that is increasing the length of the alkyl chain from C8 to C16, resulted in an increase in the nmin values obtained. For each of the investigated groups, the lowest γmin values are obtained with polymeric surfactants having the highest EO content. The optimum low tension performance occurs at the low end of the equivalent alkane carbon number scale (at EACNs below 6). Under the influence of added electrolytes these EACNs were shifted to higher values.  相似文献   

16.
The 1-octyl-3-methylimidazolium chloride, [C_8 mim][Cl] ionic liquid(IL) was used as a novel surfactant in n-heptane/water system. The interfacial tensions(IFT) were measured and corresponding variations were investigated. An IFT reduction of 80.8% was appropriate under the IL CMC of about 0.1 mol·L~(-1) and stronger effects were achieved when magnetite nanoparticles and salts were present profoundly under alkaline p Hs.The equilibrium IFT data were accurately simulated with the Frumkin adsorption model. Hereafter, the saturated surface concentration, equilibrium constant and interaction parameter were obtained and their variations were demonstrated. Further, emulsion stability and contact angle of oil/water interface over quartz surface were studied. The oil/water emulsion stability was hardly changed with nanoparticles; however, the stability of oil/water + IL emulsions was significantly improved. It was also revealed that the presence of sodium and calcium chloride electrolytes fortifies the IL impact, whereas sodium sulfate weakens. From dynamic IFT data and fitting with kinetic models, it was found that the IL migration toward interface follows the mixed diffusion–kinetic control model. Consequently, the IL diffusion coefficient and the appropriate activation energy were determined.  相似文献   

17.
The objective of this study was to identify suitable combinations of additives to aqueous alkaline formulations for the potential recovery of Saskatchewan heavy crude oil. A previously developed strategy was applied to screen various additive combinations consisting of three commercial petroleum sulfonate surfactants and two commercial lignosulfonate surfactants. The selection of the additives was based on a large number of physical and interfacial property measurements in conjunction with phase stability tests at different temperatures. The resulting ternary formulations, labelled here as Mixed-Surfactant-Enhanced Alkaline (MSEA) systems, were very successful in reversing the trend of increasing interfacial tension with time that characterizes additive-free alkaline/crude oil systems. This success came at the expense of initial IFT values that were considerably higher than those exhibited by the corresponding additive-free alkaline solutions. However, at higher temperatures (65 °C), these ternary MSEA formulations were capable of generating very low IFT values against the crude oil (in the range of 5 × 10?2 to 10?1 mN/m), which suggests that they could be suitable candidates for commercial exploitation of heavy oil recovery processes.  相似文献   

18.
Because earlier model detergency studies have shown that oil/water interfacial tension is critically important in oil removal processes, factors affecting the interfacial tension between detergent-range nonionic surfactant solutions and paraffin oil have been examined. For a given hydrophobe, equilibrium interfacial tension values increase with the length of the ethylene oxide chain in the hydrophile, because of the attendant decrease in overall surface activity. For a given degree of ethoxylation, commercial nonlphenol ethoxylates reduce interfacial tension more effectively than their secondary alcohol-based counterparts, and these in turn are more effective than commercial primary alcohol ethoxylates. Furthermore, monodisperse primary alcohol ethoxylates reduce interfacial tension more effectively than broad-range ethoxylates with similar cloud points. This observed order of effectiveness is attributed in part to variations in the extent of fractionation that occur as nonionic surfactants divide between the oil and water phases. Equilibrium interfacial tension values produced by commercial nonionic surfactants are significantly more dependent on concentration and temperature than those obtained with monodisperse ethoxylates. However, the time-course for lowering interfacial tension exhibited by monodisperse ethoxylates varies with concentration and temperature to a greater extent than that displayed by commercial products. These findings are accounted for by the combined effects of the changes in relative surface activity and partitioning that occur as the concentration and temperature are varied. An imidazoline-based quaternary fabric softener markedly increases the interfacial tension immediately following phase contact, whereas equilibrium values are only slightly higher in the presence of the softener. Appatently, preferential adsorption of the softener occurs at the interface, followed by adsorption of the nonionic surfactant at the new softener/water interface. Builders and electrolytes have no significant effect on the interfacial tension between aqueous nonionic surfactant solutions and paraffin oil. Terg-O-Tometer results demonstrate the correlation between oil/water interfacial tension and detergency.  相似文献   

19.
Dynamic interfacial tension (IFT) between two immiscible liquids has been investigated by the method of drop volume tensiometry. Hexadecane and water were employed for the measurements. In the case of the pure oil-water system, it was found that with hexadecane as the drop phase the IFT was very close to the published value (53.5 mN/m). When water acted as the drop phase the apparent IFT was about 20% higher, and a correction method was developed to account for the different geometry of droplet formation. A similar effect was observed when a surface active additive was present in either one or both phases. The effects of ready-made surfactants and their in-situ-formed equivalents were examined. It was found that both decreased the IFT between the two phases, but the in-situ-formed surfactant was more effective in that respect, It was also found that the IFT between acidic hexadecane and NaOH solution increased when ready-made surfactant was added to the alkaline solution. Addition of salt (NaCl) produced the expected decrease in IFT while the effect of added NaOH appeared to be more complex.  相似文献   

20.
Interfacial properties are of critical importance to various separation applications. In heavy oil recovery, for example, a low oil–water interfacial tension (IFT) benefits the separation of heavy oil from their host rocks, which becomes problematic in the later stage of oil–water separation. CO2-responsive surfactants were investigated to enhance the overall heavy oil recovery by switching their interfacial activity to the desired state in each stage. The surfactants at interfacially active state greatly enhanced the separation of heavy oil from hosting solids, as demonstrated by measuring contact angle and oil liberation using a custom-designed on-line visualization system. Meanwhile, the resulting heavy oil-in-water emulsions could also be easily demulsified by the bubbling of CO2 gas, which switched off the interfacial activity of the surfactants. Furthermore, CO2-responsive surfactants could be partially recycled in process water to improve sustainability, making CO2-responsive surfactants to be promising chemical aids in heavy oil production and many other vital industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号