首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The ongoing surge in demand for high‐performance energy storage systems inspires the relentless pursuit of advanced materials and structures. Components of energy storage systems are generally based on inorganic/metal compounds, carbonaceous substances, and petroleum‐derived hydrocarbon chemicals. These traditional materials, however, may have difficulties fulfilling the ever‐increasing requirements of energy storage systems. Recently, nanocellulose has garnered considerable attention as an exceptional 1D element due to its natural abundance, environmental friendliness, recyclability, structural uniqueness, facile modification, and dimensional stability. Recent advances and future outlooks of nanocellulose as a green material for energy storage systems are described, with a focus on its application in supercapacitors, lithium‐ion batteries (LIBs), and post‐LIBs. Nanocellulose is typically classified as cellulose nanofibril (CNF), cellulose nanocrystal (CNC), and bacterial cellulose (BC). The unusual 1D structure and chemical functionalities of nanocellulose bring unprecedented benefits to the fabrication and performance of energy storage materials and systems, which lie far beyond those achievable with conventional synthetic materials. It is believed that this progress report can stimulate research interests in nanocellulose as a promising material, eventually widening material horizons for the development of next‐generation energy storage systems, that will lead us closer to so‐called Battery‐of‐Things (BoT) era.  相似文献   

3.
Aqueous suspensions of cellulose nanocrystals (CNCs) are known to self-assemble into a chiral nematic liquid crystalline phase, leading to solid-state nanostructured colored films upon solvent evaporation, even in the presence of templating agents. The angular optical response of these structures, and therefore their visual appearance, are completely determined by the spatial arrangement of the CNCs when the drying suspension undergoes a transition from a flowing and liquid crystalline state to a kinetically arrested state. Here, it is demonstrated how the angular response of the final film allows for retrieval of key physical properties and the chemical composition of the suspension at the onset of the kinetic arrest, thus capturing a snapshot of the past. To illustrate this methodology, a dynamically evolving sol–gel coassembly process is investigated by adding various amounts of organosilica precursor, namely, 1,2-bis(trimethoxysilyl)ethane. The influence of organosilica condensation on the kinetic arrest can be tracked and thus explains the angular response of the resulting films. The a posteriori and in situ approach is general; it can be applied to a variety of additives in CNC-based films and it allows access to key rheological information of the suspension without using any dedicated rheological technique.  相似文献   

4.
5.
6.
7.
8.
纤维素基可生物降解共混高分子材料的制备和性能   总被引:7,自引:0,他引:7  
综述了近年来以纤维素为共混组分制备可生物降解高分子材料的研究进展,重点介绍了纤维素或纤维素衍生物与其它天然高分子(壳聚糖、蛋白质、淀粉等)以及可降解合成高分子(聚乙二醇、聚己内酯、聚乳酸等)共混材料的制备和性能,揭示了纤维素基可生物降解材料在某些应用领域替代石油基材料的潜力.  相似文献   

9.
Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self-assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin-film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self-assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.  相似文献   

10.
Architected materials with nano/microscale orders can provide superior mechanical properties; however, reproducing such levels of ordering in complex structures has remained challenging. Inspired by Bouligand structures in nature, here, 3D printing of complex geometries with guided long-order radially twisted chiral hierarchy, using cellulose nanocrystals (CNC)-based inks is presented. Detailed rheological measurements, in situ flow analysis, polarized optical microscopy (POM), and director field analysis are employed to evaluate the chiral assembly over the printing process. It is demonstrated that shear flow forces inside the 3D printer's nozzle orient individual CNC particles forming a pseudo-nematic phase that relaxes to uniformly aligned concentric chiral nematic structures after the flow cessation. Acrylamide, a photo-curable monomer, is incorporated to arrest the concentric chiral arrangements within the printed filaments. The time series POM snapshots show that adding the photo-curable monomer at the optimized concentrations does not interfere with chiral self-assemblies and instead increases the chiral relaxation rate. Due to the liquid-like nature of the as-printed inks, optimized Carbopol microgels are used to support printed filaments before photo-polymerization. By paving the path towards developing bio-inspired materials with nanoscale hierarchies in larger-scale printed constructs, this biomimetic approach expands 3D printing materials beyond what has been realized so far.  相似文献   

11.
12.
13.
纳米纤维素发光材料不仅具有发光基团特有的光物理或光化学性能,还具备纳米纤维素的可生物降解、生物相容、环境友好等特性,拓展了功能化纤维材料的应用领域.根据制备方法,纳米纤维素发光材料可分为三类:纳米纤维素/碳量子点复合发光材料、纤维素发光碳量子点和纳米纤维素/荧光染料复合发光材料.纳米纤维素发光材料具有独特的光学特性及结...  相似文献   

14.
15.
16.
17.
Supramolecularly assembled high-order supercrystals (SCs) help control the dielectric, electronic, and excitonic properties of semiconductor nanocrystals (NCs) and quantum dots (QDs). Ligand-engineered perovskite NCs (PNCs) assemble into SCs showing shorter excitonic lifetimes than strongly dielectric PNC films showing long photoluminescence (PL) lifetimes and long-range carrier diffusion. Monodentate to bidentate ligand exchange on ≈ 8 nm halide perovskite (APbX3; A:Cs/MA, X:Br/I) PNCs generates mechanically stable SCs with close-packed lattices, overlapping electronic wave functions, and higher dielectric constant, providing distinct excitonic properties from single PNCs or PNC films. From Fast Fourier Transform (FFT) images, time-resolved PL, and small-angle X-ray scattering, structurally and excitonically ordered large SCs are identified. An Sc shows a smaller spectral shift (<35 meV) than a PNC film (>100 meV), a microcrystal (>100 meV), or a bulk crystal (>100 meV). Also, the exciton lifetime (<10 ns) of an SC is excitation power-independent in the single exciton regime 〈N〉<1, comparable to an isolated PNC. Therefore, bidentate-ligand-assisted SCs help overcome delayed exciton or carrier recombination in halide perovskite nanocrystal assemblies or films.  相似文献   

18.
Over millions of years, animals and plants have evolved complex molecules and structures that endow them with vibrant colors. Among the sources of natural coloration, structural color is prominent in insects, bird feathers, snake skin, plants, and other organisms, where the color arises from the interaction of light with nanoscale features rather than absorption from a pigment. Cellulose nanocrystals (CNCs) are a biorenewable resource that spontaneously organize into chiral nematic liquid crystals having a hierarchical structure that resembles the Bouligand structure of arthropod shells. The periodic, chiral nematic organization of CNC films leads them to diffract light, making them appear iridescent. Over the past two decades, there have been many advances to develop the photonic properties of CNCs for applications ranging from cosmetics to sensors. Here, the origin of color in CNCs, the control of photonic properties of CNC films, the development of new composite materials of CNCs that can yield flexible photonic structures, and the future challenges in this field are discussed. In particular, recent efforts to make flexible photonic materials using CNCs are highlighted.  相似文献   

19.
Carbohydrates have been regarded as one of the most ideally suited candidates for chirality study via self-assembly owning to their unique chemical structures, abundance, and sustainability. Much efforts have been devoted to design and synthesize diverse carbohydrate derivatives and self-assemble them into various supermolecular morphologies. Nevertheless, still inadequate attention is paid to deeply and comprehensively understand how the carbohydrate structures and self-assembly approaches affect the final morphologies and properties for future demands. Herein, to fulfill the need, a range of recently published studies relating to the chirality of carbohydrates is reviewed and discussed. Furthermore, to tune the chirality of carbohydrate-based structures on both molecular and superstructural levels via chirality transfer and chirality expression, the designing of the molecules and choosing of the proper approaches for self-assembly are elucidated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号