共查询到20条相似文献,搜索用时 78 毫秒
1.
Han-Yue Zhang Xiao-Gang Chen Zhi-Xu Zhang Xian-Jiang Song Tie Zhang Qiang Pan Yi Zhang Ren-Gen Xiong 《Advanced materials (Deerfield Beach, Fla.)》2020,32(47):2005213
3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low-dimensional lead-based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A-site cation [CH3PH3]+ (methylphosphonium, MP) is employed to successfully obtain a lead-free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3, which shows clear above-room-temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP-based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects. 相似文献
2.
Tai‐Ting Sha Yu‐An Xiong Qiang Pan Xiao‐Gang Chen Xian‐Jiang Song Jie Yao Shu‐Rong Miao Zheng‐Yin Jing Zi‐Jie Feng Yu‐Meng You Ren‐Gen Xiong 《Advanced materials (Deerfield Beach, Fla.)》2019,31(30)
Hybrid perovskite materials are famous for their great application potential in photovoltaics and optoelectronics. Among them, lead‐iodide‐based perovskites receive great attention because of their good optical absorption ability and excellent electrical transport properties. Although many believe the ferroelectric photovoltaic effect (FEPV) plays a crucial role for the high conversion efficiency, the ferroelectricity in CH3NH3PbI3 is still under debate, and obtaining ferroelectric lead iodide perovskites is still challenging. In order to avoid the randomness and blindness in the conventional method of searching for perovskite ferroelectrics, a design strategy of fluorine modification is developed. As a demonstration, a nonpolar lead iodide perovskite is modified and a new 2D fluorinated layered hybrid perovskite material of (4,4‐difluorocyclohexylammonium)2PbI4, 1 , is obtained, which possesses clear ferroelectricity with controllable spontaneous polarization. The direct bandgap of 2.38 eV with strong photoluminescence also guarantees the direct observation of polarization‐induced FEPV. More importantly, the 2D structure and fluorination are also expected to achieve both good stability and charge transport properties. 1 is not only a 2D fluorinated lead iodide perovskite with confirmed ferroelectricity, but also a great platform for studying the effect of ferroelectricity and FEPV in the context of lead halide perovskite solar cells and other optoelectronic applications. 相似文献
3.
Feng Zhou Ibrahim Abdelwahab Kai Leng Kian Ping Loh Wei Ji 《Advanced materials (Deerfield Beach, Fla.)》2019,31(48)
Two‐dimensional (2D) perovskites have proved to be promising semiconductors for photovoltaics, photonics, and optoelectronics. Here, a strategy is presented toward the realization of highly efficient, sub‐bandgap photodetection by employing excitonic effects in 2D Ruddlesden–Popper‐type halide perovskites (RPPs). On near resonance with 2D excitons, layered RPPs exhibit degenerate two‐photon absorption (D‐2PA) coefficients as giant as 0.2–0.64 cm MW?1. 2D RPP‐based sub‐bandgap photodetectors show excellent detection performance in the near‐infrared (NIR): a two‐photon‐generated current responsivity up to 1.2 × 104 cm2 W?2 s?1, two orders of magnitude greater than InAsSbP‐pin photodiodes; and a dark current as low as 2 pA at room temperature. More intriguingly, layered‐RPP detectors are highly sensitive to the light polarization of incoming photons, showing a considerable anisotropy in their D‐2PA coefficients (β[001]/β[011] = 2.4, 70% larger than the ratios reported for zinc‐blende semiconductors). By controlling the thickness of the inorganic quantum well, it is found that layered RPPs of (C4H9NH3)2(CH3NH3)Pb2I7 can be utilized for three‐photon photodetection in the NIR region. 相似文献
4.
Siyuan Li Yong Zhang Wei Yang Hui Liu Xiaosheng Fang 《Advanced materials (Deerfield Beach, Fla.)》2020,32(7):1905443
2D perovskites, due to their unique properties and reduced dimension, are promising candidates for future optoelectronic devices. However, the development of stable and nontoxic 2D wide-bandgap perovskites remains a challenge. 2D all-inorganic perovskite Sr2Nb3O10 (SNO) nanosheets with thicknesses down to 1.8 nm are synthesized by liquid exfoliation, and for the first time, UV photodetectors (PDs) based on individual few-layer SNO sheets are investigated. The SNO sheet-based PDs exhibit excellent UV detecting performance (narrowband responsivity = 1214 A W−1, external quantum efficiency = 5.6 × 105%, detectivity = 1.4 × 1014 Jones @270 nm, 1 V bias), and fast response speed (trise ≈ 0.4 ms, tdecay ≈ 40 ms), outperforming most reported individual 2D sheet-based UV PDs. Furthermore, the carrier transport properties of SNO and the performance of SNO-based phototransistors are successfully controlled by gate voltage. More intriguingly, the photodetecting performance and carrier transport properties of SNO sheets are dependent on their thickness. In addition, flexible and transparent PDs with high mechanical stability are easily fabricated based on SNO nanosheet film. This work sheds light on the development of high-performance optoelectronics based on low-dimensional wide-bandgap perovskites in the future. 相似文献
5.
Shali Wei Fang Wang Xuming Zou Liming Wang Chang Liu Xingqiang Liu Weida Hu Zhiyong Fan Johnny C. Ho Lei Liao 《Advanced materials (Deerfield Beach, Fla.)》2020,32(6):1907527
Organic–inorganic hybrid perovskites (PVKs) have recently emerged as attractive materials for photodetectors. However, the poor stability and low electrical conductivity still restrict their practical utilization. Owing to the quantum-well feature of two-dimensional (2D) Ruddlesden–Popper PVKs (2D PVKs), a promising quasi-2D PVK/indium gallium zinc oxide (IGZO) heterostructure phototransistor can be designed. By using a simple ligand-exchange spin-coating method, quasi-2D PVK fabricated on flexible substrates exhibits a desirable type-II energy band alignment, which facilitates effective spatial separation of photoexcited carriers. The device exhibits excellent photoresponsivity values of >105 A W−1 at 457 nm, and broadband photoresponse (457–1064 nm). By operating the device in the depletion regime, the specific detectivity is found to be 5.1 × 1016 Jones, which is the record high value among all PVK-based photodetectors reported to date. Due to the resistive hopping barrier in the quasi-2D PVK, the device can also work as an optoelectronic memory for near-infrared information storage. More importantly, the easy manufacturing process is highly beneficial, enabling large-scale and uniform quasi-2D PVK/IGZO hybrid films for detector arrays with outstanding ambient and operation stabilities. All these findings demonstrate the device architecture here provides a rational avenue to the design of next-generation flexible photodetectors with unprecedented sensitivity. 相似文献
6.
Dezhong Zhang Yunxing Fu Wenping Wu Binhe Li Helong Zhu Hongmei Zhan Yanxiang Cheng Chuanjiang Qin Lixiang Wang 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(11):2206927
Quasi-2D perovskites have demonstrated great application potential in light-emitting diodes (LEDs). Defect passivation with chemicals plays a critical role to achieve high efficiency. However, there are still challenges in comprehensively passivating the defects distributed at surface, bulk, and buried interface of quasi-2D perovskite emitting films, hindering the further improvement of device performance. Herein, 9,9-substituted fluorene derivatives with different terminal functional groups are developed tactfully to realize comprehensive passivation, which greatly contributes to reducing nonradiative recombination at surface, suppressing ion migration in bulk, and filling interfacial charge traps at buried interface, respectively. Eventually, quasi-2D perovskite LEDs have an increased external quantum efficiency from 18.2% to 23.2%, improved operation lifetime by more than six times and lower turn-on voltage simultaneously. Here the importance of comprehensive passivation is highlighted and guidelines for the design and application of passivators for perovskite optoelectronics are provided. 相似文献
7.
A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity 下载免费PDF全文
Siu‐Fung Leung Kang‐Ting Ho Po‐Kai Kung Vincent K. S. Hsiao Husam N. Alshareef Zhong Lin Wang Jr‐Hau He 《Advanced materials (Deerfield Beach, Fla.)》2018,30(8)
Flexible and self‐powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self‐powered and flexible PD based on the methylammonium lead iodide (CH3NH3PBI3) perovskite is demonstrated. Such a self‐powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high‐quality CH3NH3PBI3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 1013 Jones. In the self‐powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW?1 cm?2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self‐powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real‐world sensing capability, suggests a new direction for next‐generation optical communications, sensing, and imaging applications. 相似文献
8.
9.
Tingwei He Yuanzhi Jiang Xiangyu Xing Mingjian Yuan 《Advanced materials (Deerfield Beach, Fla.)》2020,32(26):1903937
Organic–inorganic hybrid lead-halide perovskite materials (ABX3) have attracted widespread attention in the field of photovoltaics owing to their impressive optical and electrical properties. However, obstacles still exist in the commercialization of perovskite photovoltaics, such as poor stability, hysteresis, and human toxicity. A-site cation engineering is considered to be a powerful tool to tune perovskite structures and the resulting optoelectronic properties. Based on the selection and combination of A-site cations, three types of perovskite structures, i.e., 3D perovskite, reduced-dimensional (2D/quasi-2D) perovskite, and 2D/3D hybrid perovskite can be formed. Herein, the remarkable breakthroughs resulting from these three perovskite structures are summarized, and their corresponding properties and characteristics, as well as their intrinsic disadvantages, are highlighted. By summarizing recent research progress, a new viewpoint for improving the performance and stability of perovskite photovoltaics is provided. 相似文献
10.
Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low‐Pressure Vapor‐Assisted Solution Process 下载免费PDF全文
Ming‐Hsien Li Hung‐Hsiang Yeh Yu‐Hsien Chiang U‐Ser Jeng Chun‐Jen Su Hung‐Wei Shiu Yao‐Jane Hsu Nobuhiro Kosugi Takuji Ohigashi Yu‐An Chen Po‐Shen Shen Peter Chen Tzung‐Fang Guo 《Advanced materials (Deerfield Beach, Fla.)》2018,30(30)
The fabrication of multidimensional organometallic halide perovskite via a low‐pressure vapor‐assisted solution process is demonstrated for the first time. Phenyl ethyl‐ammonium iodide (PEAI)‐doped lead iodide (PbI2) is first spin‐coated onto the substrate and subsequently reacts with methyl‐ammonium iodide (MAI) vapor in a low‐pressure heating oven. The doping ratio of PEAI in MAI‐vapor‐treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV–vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low‐dimensional perovskite (PEA2MAn?1PbnI3n+1) with various values of n after vapor reaction. The dimensionality of the as‐fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI‐containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open‐circuit voltage of 1.08 V, a current density of 21.91 mA cm?2, and a remarkable fill factor of 80.36%. 相似文献
11.
Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability 下载免费PDF全文
Xinqian Zhang Gang Wu Shida Yang Weifei Fu Zhongqiang Zhang Chen Chen Wenqing Liu Jielin Yan Weitao Yang Hongzheng Chen 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(33)
Vertically oriented highly crystalline 2D layered (BA)2(MA)n ?1Pbn I3n +1 (BA = CH3(CH2)3NH3, MA = CH3NH3, n = 3, 4) perovskite thin‐films are fabricated with the aid of ammonium thiocyanate (NH4SCN) additive through one‐step spin‐coating process. The humidity‐stability of the film is certified by the almost unchanged X‐ray diffraction patterns after exposed to humid atmosphere (H r = 55 ± 5%) for 40 d. The photovoltaic devices with the structure of indium tin oxide(ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrene‐sulfonate)/(BA)2(MA)n ?1Pbn I3n +1(n = 3,4)/[6,6]‐phenyl‐C61‐butyric acid methyl ester/Bathocuproine/Ag are fabricated. The devices based on (BA)2(MA)2Pb3I10 perovskite (n = 3) with the precursor composition of BAI:methylammonium iodide:PbI2:NH4SCN = 2:2:3:1 (by molar ratio) show an averaged power conversion efficiency (PCE) of 6.82%. In the case of (BA)2(MA)3Pb4I13 (n = 4), a higher PCE of 8.79% is achieved. Both of the unsealed devices perform unique stability with almost unchanged PCE during the period of storage in purified N2 glove box. This work provides a simple and effective method to enhance the efficiency of the 2D perovskite solar cell. 相似文献
12.
Justin M. Hoffman Joseph Strzalka Nathan C. Flanders Ido Hadar Shelby A. Cuthriell Qingteng Zhang Richard D. Schaller William R. Dichtel Lin X. Chen Mercouri G. Kanatzidis 《Advanced materials (Deerfield Beach, Fla.)》2020,32(33):2002812
2D hybrid halide perovskites with the formula (A′)2(A)n-1PbnI3n+1 have remarkable stability and promising efficiency in photovoltaic and optoelectronic devices, yet fundamental understanding of film formation, key to optimizing these devices, is lacking. Here, in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor film formation during spin-coating. This elucidates the general film formation mechanism of 2D halide perovskites during one-step spin-coating. There are three stages of film formation: sol–gel, oriented 3D, and 2D. Three precursor phases form during the sol–gel stage and transform to perovskite, first giving a highly oriented 3D-like phase at the air/liquid interface followed by subsequent nucleations forming slightly less oriented 2D perovskite. Furthermore, heating before crystallization leads to fewer nucleations and faster removal of the precursors, improving orientation. This outlines the primary causes of phase distribution and perpendicular orientation in 2D perovskite films and paves the way for rationally designed film fabrication techniques. 相似文献
13.
14.
Xixiang Zhu Hengxing Xu Yongtao Liu Jia Zhang Miaosheng Wang Ilia N. Ivanov Olga S. Ovchinnikova Bin Hu 《Advanced materials (Deerfield Beach, Fla.)》2019,31(49)
A new approach to generate a two‐photon up‐conversion photoluminescence (PL) by directly exciting the gap states with continuous‐wave (CW) infrared photoexcitation in solution‐processing quasi‐2D perovskite films [(PEA)2(MA)4Pb5Br16 with n = 5] is reported. Specifically, a visible PL peaked at 520 nm is observed with the quadratic power dependence by exciting the gap states with CW 980 nm laser excitation, indicating a two‐photon up‐conversion PL occurring in quasi‐2D perovskite films. Decreasing the gap states by reducing the n value leads to a dramatic decrease in the two‐photon up‐conversion PL signal. This confirms that the gap states are indeed responsible for generating the two‐photon up‐conversion PL in quasi‐2D perovskites. Furthermore, mechanical scratching indicates that the different‐n‐value nanoplates are essentially uniformly formed in the quasi‐2D perovskite films toward generating multi‐photon up‐conversion light emission. More importantly, the two‐photon up‐conversion PL is found to be sensitive to an external magnetic field, indicating that the gap states are essentially formed as spatially extended states ready for multi‐photon excitation. Polarization‐dependent up‐conversion PL studies reveal that the gap states experience the orbit–orbit interaction through Coulomb polarization to form spatially extended states toward developing multi‐photon up‐conversion light emission in quasi‐2D perovskites. 相似文献
15.
For decades ferroelectric thin films (FETFs) have been the focus of research and development for next-generation memory and semiconductor devices. FETFs are attractive because their polarization states are highly localized, stable, and switchable. These unique properties are also attractive for (bio)molecular sensing and separation applications. Polarization of both polymer and ceramic FETF results in the expression of a sustained high, non-Faradaic, surface charge density. If these surface charges are maintained in aqueous environments, then the resulting electrostatic forces should induce the formation of electrolyte gradients and aid in the localization of charged species to the surface. Recently, there has been a growing interest in the interfacial properties of FETFs, specifically how they interact with liquid or gaseous phases. Recent work has shown that the FETF polarization state affects adsorption from the gaseous phase, surface catalysis, and cell growth. Encouraged by these findings, the use of FETFs in aqueous environments is explored. After an introduction to FETFs, the growing body of literature on the FETF interface is reviewed, along with the limited number of studies demonstrating FETF function in gas and liquid environments. Finally, the exciting possibilities that FETFs could bring to interfacial engineering and lab-on-chip (LOC) device design is reviewed. 相似文献
16.
17.
18.
Qin Yao Qifan Xue Zhenchao Li Kaicheng Zhang Teng Zhang Ning Li Shihe Yang Christoph J. Brabec Hin-Lap Yip Yong Cao 《Advanced materials (Deerfield Beach, Fla.)》2020,32(26):2000571
Almost all highly efficient perovskite solar cells (PVSCs) with power conversion efficiencies (PCEs) of greater than 22% currently contain the thermally unstable methylammonium (MA) molecule. MA-free perovskites are an intrinsically more stable optoelectronic material for use in solar cells but compromise the performance of PVSCs with relatively large energy loss. Here, the open-circuit voltage (Voc) deficit is circumvented by the incorporation of β-guanidinopropionic acid (β-GUA) molecules into an MA-free bulk perovskite, which facilitates the formation of quasi-2D structure with face-on orientation. The 2D/3D hybrid perovskites embed at the grain boundaries of the 3D bulk perovskites and are distributed through half the thickness of the film, which effectively passivates defects and minimizes energy loss of the PVSCs through reduced charge recombination rates and enhanced charge extraction efficiencies. A PCE of 22.2% (certified efficiency of 21.5%) is achieved and the operational stability of the MA-free PVSCs is improved. 相似文献
19.
T. D. Ibragimov 《Journal of Low Temperature Physics》2007,147(1-2):1-6
The temperature dependence of transmission spectra near the two-phonon states zone of TlGaSe2 crystals is investigated. The additional band at 142 K and a decrease of transmission at 257 K are observed. It is shown
that the successive thermocycling processes between the commensurate and incommensurate phases lead to appreciable changes
in these spectra. The experimental results are explained by revealing of phase transitions at indicated temperatures, the
influence of semiconductor properties and layer disordering of the TlGaSe2 crystal.
相似文献
20.
Photodetectors: Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics (Adv. Mater. 42/2015) 下载免费PDF全文
Xudong Wang Peng Wang Jianlu Wang Weida Hu Xiaohao Zhou Nan Guo Hai Huang Shuo Sun Hong Shen Tie Lin Minghua Tang Lei Liao Anquan Jiang Jinglan Sun Xiangjian Meng Xiaoshuang Chen Wei Lu Junhao Chu 《Advanced materials (Deerfield Beach, Fla.)》2015,27(42):6538-6538