首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium-ion batteries have remained a state-of-the-art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high-voltage cathodes represent promising candidates for next-generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high-performing single-ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room-temperature conductivity of 1.5 × 10−4 S cm−1, and exceptional selectivity for Li-ion conduction (tLi+ = 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi-solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.  相似文献   

2.
Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic-liquid (IL) electrolyte composed of 1-ethyl-3-methylimidazolium (EMIm) cations and high-concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite-free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm−2. Li anodes paired with lithium cobalt oxide (LiCoO2) and lithium nickel cobalt manganese oxide (LiNi0.8Co0.1Mn0.1O2, NCM 811) cathodes exhibit 99.6–99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g−1 and ≈765 Wh kg−1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li–NMC 811 full batteries.  相似文献   

3.
Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF3) to create SPEs inside LiNi0.6Co0.2 Mn0.2O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g−1 under high areal capacity of 3.0 mAh cm−2. This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries.  相似文献   

4.
5.
Lithium-metal batteries (LMBs) with high energy densities are highly desirable for energy storage, but generally suffer from dendrite growth and side reactions in liquid electrolytes; thus the need for solid electrolytes with high mechanical strength, ionic conductivity, and compatible interface arises. Herein, a thiol-branched solid polymer electrolyte (SPE) is introduced featuring high Li+ conductivity (2.26 × 10−4 S cm−1 at room temperature) and good mechanical strength (9.4 MPa)/toughness (≈500%), thus unblocking the tradeoff between ionic conductivity and mechanical robustness in polymer electrolytes. The SPE (denoted as M-S-PEGDA) is fabricated by covalently cross-linking metal–organic frameworks (MOFs), tetrakis (3-mercaptopropionic acid) pentaerythritol (PETMP), and poly(ethylene glycol) diacrylate (PEGDA) via multiple C S C bonds. The SPE also exhibits a high electrochemical window (>5.4 V), low interfacial impedance (<550 Ω), and impressive Li+ transference number (tLi+ = 0.44). As a result, Li||Li symmetrical cells with the thiol-branched SPE displayed a high stability in a >1300 h cycling test. Moreover, a Li|M-S-PEGDA|LiFePO4 full cell demonstrates discharge capacity of 143.7 mAh g−1 and maintains 85.6% after 500 cycles at 0.5 C, displaying one of the most outstanding performances for SPEs to date.  相似文献   

6.
With increasing demands for safe, high capacity energy storage to support personal electronics, newer devices such as unmanned aerial vehicles, as well as the commercialization of electric vehicles, current energy storage technologies are facing increased challenges. Although alternative batteries have been intensively investigated, lithium (Li) batteries are still recognized as the preferred energy storage solution for the consumer electronics markets and next generation automobiles. However, the commercialized Li batteries still have disadvantages, such as low capacities, potential safety issues, and unfavorable cycling life. Therefore, the design and development of electromaterials toward high-energy-density, long-life-span Li batteries with improved safety is a focus for researchers in the field of energy materials. Herein, recent advances in the development of novel organic electrolytes are summarized toward solid-state Li batteries with higher energy density and improved safety. On the basis of new insights into ionic conduction and design principles of organic-based solid-state electrolytes, specific strategies toward developing these electrolytes for Li metal anodes, high-energy-density cathode materials (e.g., high voltage materials), as well as the optimization of cathode formulations are outlined. Finally, prospects for next generation solid-state electrolytes are also proposed.  相似文献   

7.
The use of poly(1,3-dioxolane) (PDOL) electrolyte for lithium batteries has gained attention due to its high ionic conductivity, low cost, and potential for large-scale applications. However, its compatibility with Li metal needs improvement to build a stable solid electrolyte interface (SEI) toward metallic Li anode for practical lithium batteries. To address this concern, this study utilized a simple InCl3-driven strategy for polymerizing DOL and building a stable LiF/LiCl/LiIn hybrid SEI, confirmed through X-ray photoelectron spectroscopy (XPS) and cryogenic-transmission electron microscopy (Cryo-TEM). Furthermore, density functional theory (DFT) calculations and finite element simulation (FES) verify that the hybrid SEI exhibits not only excellent electron insulating properties but also fast transport properties of Li+. Moreover, the interfacial electric field shows an even potential distribution and larger Li+ flux, resulting in uniform dendrite-free Li deposition. The use of the LiF/LiCl/LiIn hybrid SEI in Li/Li symmetric batteries shows steady cycling for 2000 h, without experiencing a short circuit. The hybrid SEI also provided excellent rate performance and outstanding cycling stability in LiFePO4/Li batteries, with a high specific capacity of 123.5 mAh g−1 at 10 C rate. This study contributes to the design of high-performance solid lithium metal batteries utilizing PDOL electrolytes.  相似文献   

8.
This work reports the facile synthesis of nonaqueous zinc‐ion conducting polymer electrolyte (ZIP) membranes using an ultraviolet (UV)‐light‐induced photopolymerization technique, with room temperature (RT) ionic conductivity values in the order of 10?3 S cm?1. The ZIP membranes demonstrate excellent physicochemical and electrochemical properties, including an electrochemical stability window of >2.4 V versus Zn|Zn2+ and dendrite‐free plating/stripping processes in symmetric Zn||Zn cells. Besides, a UV‐polymerization‐assisted in situ process is developed to produce ZIP (abbreviated i‐ZIP), which is adopted for the first time to fabricate a nonaqueous zinc‐metal polymer battery (ZMPB; VOPO4|i‐ZIP|Zn) and zinc‐metal hybrid polymer supercapacitor (ZMPS; activated carbon|i‐ZIP|Zn) cells. The VOPO4 cathode employed in ZMPB possesses a layered morphology, exhibiting a high average operating voltage of ≈1.2 V. As compared to the conventional polymer cell assembling approach using the ex situ process, the in situ process is simple and it enhances the overall electrochemical performance, which enables the widespread intrusion of ZMPBs and ZMPSs into the application domain. Indeed, considering the promising aspects of the proposed ZIP and its easy processability, this work opens up a new direction for the emergence of the zinc‐based energy storage technologies.  相似文献   

9.
The electrochemical performances of lithium metal batteries are determined by the kinetics of interfacial de-solvation and ion transport, especially at low-temperature environments. Here, a novel electrolyte that easily de-solvated and conducive to interfacial film formation is designed for low-temperature lithium metal batteries. A fluorinated carboxylic ester, diethyl fluoromalonate (DEFM), and a fluorinated carbonate, fluoroethylene carbonate (FEC) are used as solvents, while high concentrated lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is served as the solute. Through tailoring the electrolyte formulation, the lithium ions in the high concentrated fluorinated carboxylic ester electrolyte are mainly combined with anions, which weakens the bonding strength of lithium ions and solvent molecules in the solvation structure, beneficial to the de-solvation process at low temperature. The fluorinated carboxylic ester (FCE) electrolyte enables the LiFePO4 (LFP) | Li half-cell achieves a high capacity of 91.9 mAh g−1 at −30 °C, with high F content in the interface. With optimized de-solvation kinetics, the LFP | Li full cell remains over 100 mAh g−1 at 0 °C after cycling 100 cycles. Building new solvents with outstanding low-temperature properties and weaker solvation to match with Li metal anode, this work brings new possibilities of realizing high energy density and low temperature energy storage batteries.  相似文献   

10.
All-solid-state Li metal batteries have attracted extensive attention due to their high safety and high energy density. However, Li dendrite growth in solid-state electrolytes (SSEs) still hinders their application. Current efforts mainly aim to reduce the interfacial resistance, neglecting the intrinsic dendrite-suppression capability of SSEs. Herein, the mechanism for the formation of Li dendrites is investigated, and Li-dendrite-free SSE criteria are reported. To achieve a high dendrite-suppression capability, SSEs should be thermodynamically stable with a high interface energy against Li, and they should have a low electronic conductivity and a high ionic conductivity. A cold-pressed Li3N–LiF composite is used to validate the Li-dendrite-free design criteria, where the highly ionic conductive Li3N reduces the Li plating/stripping overpotential, and LiF with high interface energy suppresses dendrites by enhancing the nucleation energy and suppressing the Li penetration into the SSEs. The Li3N–LiF layer coating on Li3PS4 SSE achieves a record-high critical current of >6 mA cm−2 even at a high capacity of 6.0 mAh cm−2. The Coulombic efficiency also reaches a record 99% in 150 cycles. The Li3N–LiF/Li3PS4 SSE enables LiCoO2 cathodes to achieve 101.6 mAh g−1 for 50 cycles. The design principle opens a new opportunity to develop high-energy all-solid-state Li metal batteries.  相似文献   

11.
Composite solid electrolytes are considered to be the crucial components of all-solid-state lithium batteries, which are viewed as the next-generation energy storage devices for high energy density and long working life. Numerous studies have shown that fillers in composite solid electrolytes can effectively improve the ion-transport behavior, the essence of which lies in the optimization of the ion-transport path in the electrolyte. The performance is closely related to the structure of the fillers and the interaction between fillers and other electrolyte components including polymer matrices and lithium salts. In this review, the dimensional design of fillers in advanced composite solid electrolytes involving 0D–2D nanofillers, and 3D continuous frameworks are focused on. The ion-transport mechanism and the interaction between fillers and other electrolyte components are highlighted. In addition, sandwich-structured composite solid electrolytes with fillers are also discussed. Strategies for the design of composite solid electrolytes with high room temperature ionic conductivity are summarized, aiming to assist target-oriented research for high-performance composite solid electrolytes.  相似文献   

12.
用全氟醚作为增塑剂对PEO改性,并与双三氟甲烷磺酰亚胺锂复合,制备了全固态聚合物电解质。采用SEM、交流阻抗、稳态电流法及恒电流恒电压充放电等对固态聚合物电解质的性能进行了测试表征,结果表明:m(PFPE)∶m(PEO)=0.6的固态聚合物电解质膜的电导率30℃时为2.6×10-3 S·cm-1,同条件下电解质溶液电导为8.2×10-3 S·cm-1,二者处于同一个数量级;随PFPE的量增加,锂离子的迁移数增大;与液态电解质电池相比,固态聚合物电解质制成的电池具有更好的循环容量保持特性,固态聚合物电解质电池500次循环的容量保持率在88.1%,液态电解质电池循环容量保持率在64.5%左右;固态聚合电解质有很优异的耐高温安全性,在130℃和150℃下经1~2h热箱试验,用固态聚合物电解质制作的锂离子电池没出现明显体积变化,而相同条件下的液态电解质锂离子电池已发生爆裂或起火。  相似文献   

13.
14.
15.
Lithium (Li) metal batteries (LMBs) are enjoying a renaissance due to the high energy densities. However, they still suffer from the problem of uncontrollable Li dendrite and pulverization caused by continuous cracking of solid electrolyte interphase (SEI) layers. To address these issues, developing spontaneously built robust polymer‐reinforced SEI layers during electrochemical conditioning can be a simple yet effective solution. Herein, a robust homopolymer of cyclic carbonate urethane methacrylate is presented as the polymer matrix through an in situ polymerization method, in which cyclic carbonate units can participate in building a stable polymer‐integrated SEI layer during cycling. The as‐investigated gel polymer electrolyte (GPE) assembled LiCoO2/Li metal batteries exhibit a fantastic cyclability with a capacity retention of 92% after 200 cycles at 0.5 C (1 C = 180 mAh g?1), evidently exceeding that of the counterpart using liquid electrolytes. It is noted that the anionic ring‐opening polymerization of the cyclic carbonate units on the polymer close to the Li metal anodes enables a mechanically reinforced SEI layer, thus rendering excellent compatibility with Li anodes. The in situ formed polymer‐reinforced SEI layers afford a splendid strategy for developing high voltage resistant GPEs compatible with Li metal anodes toward high energy LMBs.  相似文献   

16.
A novel single‐ion conducting polymer electrolyte (SIPE) membrane with high lithium‐ion transference number, good mechanical strength, and excellent ionic conductivity is designed and synthesized by facile coupling of lithium bis(allylmalonato) borate (LiBAMB), pentaerythritol tetrakis (2‐mercaptoacetate) (PETMP) and 3,6‐dioxa‐1,8‐octanedithiol (DODT) in an electrospun poly(vinylidienefluoride) (PVDF) supporting membrane via a one‐step photoinitiated in situ thiol–ene click reaction. The structure‐optimized LiBAMB‐PETMP‐DODT (LPD)@PVDF SIPE shows an outstanding ionic conductivity of 1.32 × 10?3 S cm?1 at 25 °C, together with a high lithium‐ion transference number of 0.92 and wide electrochemical window up to 6.0 V. The SIPE exhibits high tensile strength of 7.2 MPa and elongation at break of 269%. Due to these superior performances, the SIPE can suppress lithium dendrite growth, which is confirmed by galvanostatic Li plating/stripping cycling test and analysis of morphology of Li metal electrode surface after cycling test. Li|LPD@PVDF|Li symmetric cell maintains an extremely stable and low overpotential without short circuiting over the 1050 h cycle. The Li|LPD@PVDF|LiFePO4 cell shows excellent rate capacity and outstanding cycle performance compared to cells based on a conventional liquid electrolyte (LE) with Celgard separator. The facile approach of the SIPE provides an effective and promising electrolyte for safe, long‐life, and high‐rate lithium metal batteries.  相似文献   

17.
Lithium metal batteries (LMBs) are promising for next-generation high-energy-density batteries owing to the highest specific capacity and the lowest potential of Li metal anode. However, the LMBs are normally confronted with drastic capacity fading under extremely cold conditions mainly due to the freezing issue and sluggish Li+ desolvation process in commercial ethylene carbonate (EC)-based electrolyte at ultra-low temperature (e.g., below −30 °C). To overcome the above challenges, an anti-freezing carboxylic ester of methyl propionate (MP)-based electrolyte with weak Li+ coordination and low-freezing temperature (below −60 °C) is designed, and the corresponding LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode exhibits a higher discharge capacity of 84.2 mAh g−1 and energy density of 195.0 Wh kg−1cathode than that of the cathode (1.6 mAh g−1 and 3.9 Wh kg−1cathode) working in commercial EC-based electrolytes for NCM811‖ Li cell at −60 °C. Molecular dynamics simulation, Raman spectra, and nuclear magnetic resonance characterizations reveal that rich mobile Li+ and the unique solvation structure with weak Li+ coordination are achieved in MP-based electrolyte, which collectively facilitate the Li+ transference process at low temperature. This work provides fundamental insights into low-temperature electrolytes by regulating solvation structure, and offers the basic guidelines for the design of low-temperature electrolytes for LMBs.  相似文献   

18.
All-solid-state lithium-metal batteries offer higher energy density and safety than lithium-ion batteries, but their practical applications have been pushed back by the sluggish Li+ transport, unstable electrolyte/electrode interface, and/or difficult processing of their solid-state electrolytes. Li+-conducting composite polymer electrolytes (CPEs) consisting of sub-micron particles of an oxide solid-state electrolyte (OSSE) dispersed in a solid, flexible polymer electrolyte (SPE) have shown promises to alleviate the low Li+ conductivity of SPE, and the high rigidity and large interfacial impedance of OSSEs. Solution casting has been by far the most widely used procedure for the preparation of CPEs in research laboratories; however, this method imposes several drawbacks including particle aggregation and settlement during a long-term solvent evaporation step, excessive use of organic solvents, slow production time, and mechanical issues associated with handling of ultra-thin films of CPEs (<50 µm). To address these challenges, an electrophoretic deposition (EPD) method is developed to in situ deposit ultra-thin CPEs on lithium-iron-phosphate (LFP) cathodes within just a few minutes. EPD-prepared CPEs have shown better electrochemical performance in the lithium-metal battery than those CPEs prepared by solution casting due to a better dispersion of OSSE within the SPE matrix and improved CPE contact with LFP cathodes.  相似文献   

19.
Li metal anode has been recognized as the most promising anode for its high theoretical capacity and low reduction potential. But its large-scale commercialization is hampered because of the infinite volume expansion, severe side reactions, and uncontrollable dendrite formation. Herein, the self-supporting porous lithium foam anode is obtained by a melt foaming method. The adjustable interpenetrating pore structure and dense Li3N protective layer coating on the inner surface enable the lithium foam anode with great tolerance to electrode volume variation, parasitic reaction, and dendritic growth during cycling. Full cell using high areal capacity (4.0 mAh cm−2) LiNi0.8Co0.1Mn0.1 (NCM811) cathode with the N/P ratio of 2 and E/C ratio of 3 g Ah−1 can stably operate for 200 times with 80% capacity retention. The corresponding pouch cell has <3% pressure fluctuation per cycle and almost zero pressure accumulation.  相似文献   

20.
The insufficient ionic conductivity, limited lithium-ion transference number (tLi+), and high interfacial impedance severely hinder the practical application of quasi-solid polymer electrolytes (QSPEs). Here, a sandwich-structured polyacrylonitrile (PAN) based QSPE is constructedin which MXene-SiO2 nanosheets act as a functional filler to facilitate the rapid transfer of lithium-ion in the QSPE, and a polymer and plastic crystalline electrolyte (PPCE) interface modification layer is coated on the surface of the PAN-based QSPE of 3 wt.% MXene-SiO2 (SS-PPCE/PAN-3%) to reduce interfacial impedance. Consequently, the synthesized SS-PPCE/PAN-3% QSPE delivers a promising ionic conductivity of ≈1.7 mS cm−1 at 30 °C, a satisfactory tLi+ of 0.51, and a low interfacial impedance. As expected, the assembled Li symmetric battery with SS-PPCE/PAN-3% QSPE can stably cycle more than 1550 h at 0.2 mA cm−2. The Li||LiFePO4 quasi-solid-state lithium metal battery (QSSLMB) of this QSPE exhibits a high capacity retention of 81.5% after 300 cycles at 1.0 C and at RT. Even under the high-loading cathode (LiFePO4 ≈ 10.0 mg cm−2) and RT, the QSSLMB achieves a superior area capacity and good cycling performance. Besides, the assembled high voltage Li||NMC811(loading ≈ 7.1 mg cm−2) QSSLMB has potential applications in high-energy fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号