首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The adhesives for adhesively bonded joints at cryogenic environment should be enhanced by reinforcement with low coefficient of thermal expansion (CTE) and high fracture toughness because the materials become quite brittle at cryogenic temperature. Aramid fibers are noted for their low CTE and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, core–shell structured meta-aramid/epoxy nanofiber mats were fabricated by electrospinning with polymer blending method to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperature. The CTE of the epoxy adhesives reinforced with modified nanofiber mats was measured, and the effect on the adhesion strength was investigated at single lap joints at cryogenic temperature. The fracture toughness of the adhesive joints was measured using a double cantilever beam (DCB) test.  相似文献   

2.
Fracture toughness and crack resistance of aluminum adhesive joints were measured at the cryogenic temperature of ?150°C, with respect to the orientation and volume fraction of the E-glass fibers in the epoxy adhesive. Cleavage tests on the DCB (Double Cantilever Beam) adhesive joints were performed using two different test rates of 1.67 × 10?2 and 8.33 × 10?4 mm/s to observe the crack propagation trends. From the experiments, it was found that the DCB joints bonded with the epoxy adhesive reinforced with E-glass fibers not only showed a stable crack propagation with a low crack propagation speed, but also higher fracture toughness and crack resistance than those of the DCB joints bonded with the unreinforced epoxy adhesive at a cryogenic temperature of ?150°C.  相似文献   

3.
An investigation of the thermo-mechanical behavior of silica nanoparticle reinforcement in two epoxy systems consisting of diglycidyl ether of bisphenol F (DGEBF) and cycloaliphatic epoxy resins was conducted. Silica nanoparticles with an average particle size of 20 nm were used. The mechanical and thermal properties, including coefficient of thermal expansion (CTE), modulus (E), thermal stability, fracture toughness (KIC), and moisture absorption, were measured and compared against theoretical models. It was revealed that the thermal properties of the epoxy resins improved with silica nanoparticles, indicative of a lower CTE due to the much lower CTE of the fillers, and furthermore, DGEBF achieved even lower CTE than the cycloaliphatic system at the same wt.% filler content. Equally as important, the moduli of the epoxy systems were increased by the addition of the fillers due to the large surface contact created by the silica nanoparticles and the much higher modulus of the filler than the bulk polymer. In general, the measured values of CTE and modulus were in good agreement with the theoretical model predictions. With the Kerner and Halpin-Tsai models, however, a slight deviation was observed at high wt.% of fillers. The addition of silica nanoparticles resulted in an undesirable reduction of glass transition temperature (Tg) of approximately 20 °C for the DGEBF system, however, the Tg was found to increase and improve for the cycloaliphatic system with silica nanoparticles by approximately 16 °C. Furthermore, the thermal stability improved with addition of silica nanoparticles where the decomposition temperature (Td) increased by 10 °C for the DGEBF system and the char yield significantly improved at 600 °C. The moisture absorption was also reduced for both DGEBF and cycloaliphatic epoxies with filler content. Lastly, the highest fracture toughness was achieved with approximately 20 wt.% and 15 wt.% of silica nanoparticles in DGEBF and cycloaliphatic epoxy resins, respectively.  相似文献   

4.
This study examined the thermo-mechanical behavior of epoxy resins/nano-Al2O3 composites including the curing behavior, thermal stability, dynamic mechanical properties and thermal mechanical properties. The DSC curve peak temperature of the composites was decreased by the addition of nano-Al2O3. The thermal stability of the composites was similar to that of the neat epoxy resins. Dynamic mechanical analysis (DMA) indicated the glass transition temperature of the composites to be approximately 11 °C higher than that of the neat epoxy resins. The coefficient of thermal expansion (CTE) of the composites decreased with increasing nano-Al2O3 content.  相似文献   

5.
采用核壳聚合物(Core-Shell Polymer,CSP)粒子改性环氧树脂,通过红外光谱、热力学分析和扫描电镜研究了CSP粒子对环氧树脂基体热膨胀系数(CTE)的影响。结果表明:CSP粒子壳材料分子链中的羰基在环氧树脂固化过程中可与环氧分子侧链上的羟基形成氢键作用,从而加强了核壳聚合物粒子与环氧树脂的界面作用。随着CSP粒子质量分数的增加,改性环氧树脂基体的玻璃化转变温度呈下降趋势;相对于纯环氧树脂,改性环氧树脂在玻璃化转变温度下的CTE呈现先下降后上升的趋势,添加质量分数为0.5%的CSP后,其CTE值降低了12.88%。但在玻璃化转变温度上的热膨胀系数均高于纯环氧树脂。  相似文献   

6.
Carbon fiber reinforced epoxy (CE) composite is ideal for a cryogenic fuel storage tank in space applications due to its unmatched specific strength and modulus. In this article, inter-laminar shear strength (ILSS) of carbon fiber/epoxy (CE) composite is shown to be considerably improved by engineering the interface with carboxyl functionalized multi-walled carbon nanotube (FCNT) using electrophoretic deposition technique. FCNT deposited fibers from different bath concentrations (0.3, 0.5, and 1.0 g/L) were used to fabricate the laminates, which were then tested at room (30°C) and in-situ liquid nitrogen (LN) (−196°C) temperature as well as conditioning for different time durations (0.25, 0.5, 1, 6, and 12 h) followed by immediate RT testing to study the applicability of these engineered materials at the cryogenic environment. A maximum increment in ILSS was noticed at bath concentration of 0.5 g/L, which was ~21% and ~ 17% higher than neat composite at 30°C and − 196°C, respectively. Short-term LN conditioning was found to be detrimental due to developed cryogenic shock, which was further found to be compensated by cryogenic interfacial clamping upon long-term exposure.  相似文献   

7.
The effect of aging on resin composition was investigated as a part of a study concerned with the evaluation of epoxies containing N, N, N′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane (TGDDM). Long-term stability of three different epoxy resins based on TGDDM and their mixtures with 4,4′-diaminodiphenylsulfone (DDS) was followed at 23 ± 2°C at a relative humidity ranging from 45% to 55%, by means of GPC and HPLC; short-term stability of the resins was evaluated at 125°C.  相似文献   

8.
Three different epoxy resins, based on the diglycidylether of bisphenol A (DGEBA), triglycidyl-p-aminophenol (TGPAP) and tetra-glycidyldiaminodiphenylmethane (TGDDM), which are di-, tri- and tetrafunctional, respectively, were mixed in varying proportions and cured with both 3,3′-diaminodiphenylsulphone and 4,4′-[1,4-phenylene(1-methylethylidene)]bis(2,6-dimethylbenzenamine) (EPON 1062-M from Shell). All the blends could be satisfactorily cured and gave homogeneous materials. The dynamic mechanical and fracture properties of the cured materials were measured. It was found that the glass transition temperature varied with composition systematically, whereas values of the strain energy release rate (G1c) and the stress intensity factor (K1c) showed relatively small variations with the blend composition. Toughened epoxy resins were prepared by adding a polyetherimide (PEI), in varying proportions, to the resin mixture. The ‘toughenabilities’ of different resins, or resin mixtures, were compared. This showed that the 75/25 TGPAP/DGEBA resin mixture was the most toughenable. Adding 20% of PEI led to a more than three-fold increase of the G1c value. © of SCI.  相似文献   

9.
An epoxy based on the tetraglycidyl 4,4′‐diaminodiphenyl‐ methane (TGDDM)/bisphenol A type novolac(F‐51) cured with 4,4′‐diaminidiphenysulfone (DDS) has been modified with Poly (phthalazinone ether nitrile ketone)(PPENK). The interaction between the PPENK and epoxy resin have been investigated by differential scanning calorimetry (DSC), FT‐IR, and dynamic mechanical analysis (DMA). The thermal and mechanical properties were characterized by thermogravimetric analysis (TGA), thermomechanical analysis (TMA), flexural, impact strength, and the critical stress intensity factor tests. The results showed that a large number of physical crosslinks formed by intermolecular and intramolecular hydrogen bonding indeed existed in the TGDDM/F‐51/PPENK blends. These interactions gave good compatibility between PPENK and epoxy resin. So that any phase separation had not been detected by DMA and scanning electron microscope (SEM). Beyond that the interaction could also be a benefit to the thermal and mechanical properties. Compared with the neat epoxy resin, the critical stress intensity factor values reached the maximum at 10‐phr PPENK, as well as the impact strength. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42938.  相似文献   

10.
《Ceramics International》2016,42(15):16897-16905
Heterogeneous ceramics made of cordierite (55–56 wt%), mullite (22–33 wt%) and alumina (23–11 wt%) were prepared by sintering non-standard raw materials containing corundum, talc, α-quartz, K-feldspar, kaolinite and mullite with small amounts of calcite, cristobalite and glass phases. The green specimens prepared by PVA assisted dry-pressing were sintered within the temperature range of 950–1500 °C for different dwelling times (2–8 h). The effects of sintering schedule on crystalline phase assemblage and thermomechanical properties were investigated. The sintered ceramics exhibited low coefficients of thermal expansion (CTE) (3.2–4.2×10−6 °C−1), high flexural strength (90−120 MPa and high Young modulus (100 GPa). The specimens sintered at 1250 °C exhibited the best thermal shock resistance (∆T~350 °C). The thermal expansion coefficients and thermal shock resistance were studied using Schapery model, the modelling results implying the occurrence of non-negligible mechanical interactions between the phases in bulk. The dielectric properties characterized from room to high temperature (RT– HT, up to 600 °C) revealed: (i) noticeable effects of sintering schedule on dielectric constant (5–10) and dielectric loss factor (~0.02–0.04); (ii) stable dielectric properties until the failure of the electrode material. The thermomechanical properties coupled with desirable dielectric properties make the materials suitable for high density integrated circuitry or high temperature low-dielectric materials engineering.  相似文献   

11.
In order to improve the tensile lap shear strength of adhesively bonded joints, nano-particles were dispersed in the adhesive using a 3-roll mill. The dispersion states of nano-particles in the epoxy adhesive were observed with TEM (Transmission Electron Microscopy) with respect to the mixing conditions, and the effect of nano-particles on the mechanical properties of the adhesive was measured with respect to dispersion state and weight content of nano-particles. Also the static tensile load capability of the adhesively bonded double lap joints composed of uni-directional glass/epoxy composite and nano-particle-reinforced epoxy adhesive was investigated to assess the effect of nano-particles on the lap shear strength of the joint. From the experimental and FE analysis results, it was found that the nano-particles in the adhesive improved the mechanical properties of the adhesive. Also the increased failure strain and the reduced CTE (coefficient of thermal expansion) of the nano-particle-reinforced adhesive improved the lap shear strength of adhesively bonded joints.  相似文献   

12.
Epoxidized canola oil (ECO)‐based thermoset epoxy resins were formulated with phthalic anhydride (PA) as the curing agent for different ratios of ECO to PA (1:1, 1:1.5, and 1:2 mol/mol) at curing temperatures of 155, 170, 185, and 200°C. The gelation process of the epoxy resins and the viscoelastic properties of the systems during curing were studied by rheometry, whereas the dynamic mechanical and thermal properties of the cured resins were studied by dynamic mechanical analysis (DMA) and differential scanning calorimetry. We found that the thermomechanical properties of the resins were not strongly dependent on the curing temperature of the resin, although elevated temperatures significantly accelerated the curing process. However, an increase in the curing agent (PA) amount significantly altered both the reaction rate and the thermomechanical properties of the final resin. Thus, in the ECO/PA system, the selection of the combination of the curing temperature and the molar ratios of the curing agent could be used to design thermoset resins with unique thermomechanical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40142.  相似文献   

13.
The remarkable safety characteristics of the high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) are revolutionizing the design and deployment of nuclear weapons. Kel-F 800 is used as the binder to obtain high-density, mechanically stable billets of TATB that can be machined into desired shapes. However, repeated thermal cycling between − 54 °C and 74 °C of high density, pure, and plastic-bonded TATB billets causes a permanent volume expansion (growth) of about 1.5 vol% to 2.0 vol%. Debonding of the Kel-F 800 binder occurs during growth, causing a reduction in the mechanical properties of the plastic-bonded explosive. The coefficient of thermal expansion (CTE) of these TATB billets between ambient temperature and 74 °C is 67.0 × 10−6/°C. TATB undergoes a secondary mechanical relaxation just above room temperature, coinciding with the onset of a high CTE, above the glass transition temperature (Tg) of Kel-F 800. Thus, by judicious selection of a high-Tg binder, we have essentially eliminated growth, stopped the degradation of mechanical properties after thermal cycling, suppressed the secondary mechanical relaxation, and lowered the CTE to 50.0 × 10−6/°C between ambient temperature and 74 °C.  相似文献   

14.
To develop a new class of composites with adequately high thermal conductivity and suitably controlled dielectric constant for electronic packages and printed circuit board applications, polymer composites are prepared with microsized Al2O3 particle as filler having an average particle size of 80–100 μm. Epoxy and polypropylene (PP) are chosen as matrix materials for this study. Fabrication of epoxy‐based composite is done by hand lay‐up technique and its counterpart PP‐based composite are fabricated by compression molding technique with filler content ranging from 2.5–25 vol%. Effects of filler loading on various thermal properties like effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and electrical property like dielectric constant (εc) of composites are investigated experimentally. In addition, physical properties like density and void fraction of the composites along with there morphological features are also studied. The experimental findings obtained under controlled laboratory conditions are interpreted using appropriate theoretical models. Results show that with addition of 25 vol% of Al2O3, keff of epoxy and PP improve by 482% and 498% respectively, Tg of epoxy increases from 98°C to 116°C and that of PP increases from −14.9°C to 3.4°C. For maximum filler loading of 25 vol% the CTE decreases by 14.8% and 26.4% for epoxy and PP respectively whereas the dielectric constants of the composites get suitably controlled simultaneously. POLYM. COMPOS., 36:102–112, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
In the present paper, the mechanical properties of hybrid bonded bolted joints between Fiber metal laminate (FML) and stainless steel adherends are investigated using experimental tensile tests. Three and five layered FMLs were fabricated using 430 stainless steel sheets and fiberglass prepreg layers. The adherends were bonded by AD-314 resin mixed with HA-34 hardener as adhesive and steel bolt was used for the mechanical fastening. The specimens were immersed into the sea water for 30 days and degradation of the mechanical strength of the joints was studied. Thermal cycles including heating (40 °C to100 °C) and cryogenic (−100 °C to −40 °C) cycles were applied in order to study their effects on the strength of the degraded joints. The failure mode for the adhesive bond was mixed failure and that of the bolted joint was the net-tension failure. The results showed 52% strength recovery in hybrid joints subjected to heating cycles. Cryogenic cycles also caused a 50% improvement in the tensile strength of the hybrid joints. In addition, the joint stiffness and absorbed energy of the specimens were improved significantly for both heating and cryogenic cycles. Moreover, the effect of FML stacking sequence on the results was also investigated. The results revealed that the mechanical fastening failure load for 5 layered FML joint is more affected by thermal cycles in comparison with 3 layered FML joint.  相似文献   

16.
Dispersed silicone rubbers were used to reduce the stress of cresol–formaldehyde novolac epoxy resin cured with phenolic novolac resin for electronic encapsulation application. The effects of structure, molecular weight, and contents of the vinylsiloxane oligomer on reducing the stress of the encapsulant were investigated. Morphology and dynamic mechanical behavior of rubber-modified epoxy resins were also studied. The dispersed silicone rubbers effectively reduce the stress of cured epoxy resins by reducing flexural modulus and the coefficient of thermal expansion (CTE), whereas the glass transition temperature (Tg) was hardly depressed. Electronic devices encapsulated with the dispersed silicone rubber modified epoxy molding compounds have exhibited excellent resistance to the thermal shock cycling test and have resulted in an extended device use life. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The thermal properties of carbon nanofibers (CNF)/epoxy composites, composed of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) resin and 4,4′‐diaminodiphenylsulfone (DDS) as a curing agent, were investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and dynamic mechanical thermal analysis. DSC results showed that the presence of CNF had no pronounced influence on the heat of the cure reaction. However, the incorporation of CNF slightly improved the thermal stability of the epoxy. Furthermore, the storage modulus of the TGDDM/DDS epoxy was significantly enhanced, whereas the glass‐transition temperature was not significantly affected, upon the incorporation of CNFs. The storage modulus of 5 wt % CNF/epoxy composites at 25°C was increased by 35% in comparison with that of the pure epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 295–298, 2006  相似文献   

18.
A novel di‐carboxylic acid curing agent (DACA) was successfully synthesized and cured with three different epoxy resins: glycidyl end‐capped poly(bisphenol‐A‐co‐epichlorohydrin) (pDGEBA, Mn = 377), N,N‐diglycidyl‐4‐glycidyloxyaniline (TGAP), and 4,4′‐methylenebis(N,N‐diglycidylaniline) (TGDDM). The cured epoxy exhibited excellent thermal stability, which was indicated by high initial degradation temperature (Tid) and char yield. The Tid values of cured epoxy were in the range of 327–338°C, and the char yields increased with increasing epoxy functionality. The char yields of cured DACA/pDGEPA, DACA/TGAP, and DACA/TGDDM samples were 21.1, 60.4, and 66.9%, respectively. In addition, the cured epoxy samples also showed low coefficients of thermal expansion and high storage moduli (E′), which were around 60 ppm/°C and 2800 MPa, respectively. The failure surfaces were ductile and rough, so the cured epoxy samples are expected to have high fracture toughness and impact strength. POLYM. ENG. SCI., 54:695–703, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Little information regarding the effects of prior thermal and cryogenic conditionings on hydrothermal and mechanical behavior, for varied volume fractions of constituent phases in polymer matrix fiber composites, has been published to date. The present experimental investigation uses flexural test to assess the effects of thermal and cryogenic treatments, and concurrently followed hydrothermal aging on quality of adhesion of multilayered laminates for 55, 60, and 65 wt % of E-glass fiber-reinforced epoxy composites. The specimens were conditioned at 80°C and −80°C temperatures for different time durations, and thereafter they were immediately immersed in boiling water for an hour. Water absorption rates were evaluated for those conditioned specimens in such environment. Absorption study in hydrothermal aging showed a remarkable variation for the two cases of prior conditionings. The shear strength values were compared with the test value of as-cured samples. Degradation of mechanical property was found to be less prevalent during hydrothermal aging, with a prior conditioning at 80°C temperature compared to −80°C treated glass/epoxy composites. Improved shear strength for almost all conditions of thermal conditioning in the initial stages has highlighted better adhesion influenced by postcuring phenomena during thermal or cryogenic conditioning. It was also observed from water absorption data that high temperature conditioning contributed more strengthening effect and better adhesion at the interfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1943–1949, 2006  相似文献   

20.
Epoxy resins are widely applied in cryogenic engineering and their cryogenic mechanical properties as important parameters have to be improved to meet the high requirements by cryogenic engineering applications. Carbon nanotubes (CNTs) are regarded as exceptional reinforcements for polymers. However, poor carbon nanotube (CNT)–polymer interfacial bonding leads to the unexpected low reinforcing efficiency. This paper presents a study on the cryogenic mechanical properties of multi-walled carbon nanotube reinforced epoxy nanocomposites, which are prepared by adding multi-walled carbon nanotubes (MWCNTs) to diglycidyl ether of bisphenol-F epoxy via the ultrasonic technique. When the temperature decreases from room temperature to liquid nitrogen temperature (77 K), a strong CNT–epoxy interfacial bonding is observed due to the thermal contraction of epoxy matrix because of the big differences in thermal expansion coefficients of epoxy and MWCNTs, resulting in a higher reinforcing efficiency. Moreover, synthetic sequence leads to selective dispersion of MWCNTs in the brittle primary phase but not in the soft second phase in the two phase epoxy matrix. Consequently, the cryogenic tensile strength, Young's modulus, failure strain and impact strength at 77 K are all enhanced by the addition of MWCNTs at appropriate contents. The results suggest that CNTs are promising reinforcements for enhancing the cryogenic mechanical properties of epoxy resins that have potential applications in cryogenic engineering areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号