首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A series of novel miktoarm star polymers composed of a poly(ethylene oxide) (PEO) and two side-chain liquid crystalline azobenzene-containing polymethacrylate (PEO-(PMMAZO)2) were prepared using atom transfer radical polymerization (ATRP). Bifunctional macroinitiator PEO-Br2 was synthesized by condensation reaction in two steps and characterized by 1H NMR, 13C NMR and IR. Kinetic study showed that it was a first order reaction referred to the monomer MMAZO, namely, 6-(4-methoxy-4’-oxy-azobenzene)hexyl methacrylate. The liquid crystalline behaviors of the miktoarm star polymers were studied by differential scanning calorimetry (DSC) and polarized optical microscope (POM). They exhibited smectic and nematic mesophases when Mn was beyond 9.4×103 g/mol. The phase transition temperatures of the smectic and nematic phases increased while the melting temperature of PEO decreased with increasing molecular weight of the LC block. Compared with diblock polymer PEO-PMMAZO, the melting temperature of PEO in miktoarm star polymer decreased more rapidly.  相似文献   

2.

Abstract  

A new heterobifunctional initiator, 2,3-bis(2-bromo-2-methylpropionyloxy) succinic acid, was synthesized and used in preparation of A2B2 miktoarm star copolymers, (polystyrene)2(poly(ε-caprolactone))2, by combination of atom transfer radical polymerization (ATRP) and Controlled ring-opening polymerization (ROP). The structures of products were confirmed by the 1H NMR, 13C NMR, FT–IR, elemental analysis, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). GPC traces show that the obtained polymers have a relatively narrow molecular weight distribution. The compositions of resulting miktoarm star copolymers were very close to theoretical.  相似文献   

3.
Summary A series of miktoarm star novel azobenzene side-chain liquid crystalline (LC) copolymers were synthesized by combination of atom transfer radical polymerization (ATRP) and chemical modification of the termini of ATRP-derived polymers. These miktoarm star copolymers carrying one polystyrene (PS) arm and two poly [6-(4-methoxy-4-oxy-azobenzene) hexylmethacrylate] (PMMAZO) arms were characterized by 1H NMR and GPC. The liquid crystailline behavior of these copolymers was studied by DSC and POM. It was found that the miktoarm star copolymers have the similar LC properties to PMMAZO homopolymer, and their thermal stability of the mesophases is increased, while the phase transition enthalpies are reduced.  相似文献   

4.
A series of triblock co‐polymers, consisting of a poly(ethylene glycol) (PEG) central block joined to two blocks of random p‐dioxanone‐co‐L ‐lactide copolymers were synthesized by ring‐opening polymerization of p‐dioxanone (PDO) and L ‐lactide (LLA) initiated by PEG in the presence of stannous 2‐ethylhexanoate catalyst. The resulting copolymers were characterized by various techniques including 1H and 13C NMR and FTIR spectroscopies, gel permeation chromatography, inherent viscosity, wide‐angle X‐ray diffractometry (WAXD) and differential scanning calorimetry (DSC). The conversion of PDO and L ‐lactide into the polymer was studied various mole ratios and at different polymerization temperature from 1H NMR spectra. Results of WAXD and DSC showed that the crystallinity of PEG macroinitiator was greatly influenced by the composition of PDO and L ‐lactide in the copolymer. The triblock copolymers with low molecular weight were soluble in water at below room temperature. © 2003 Society of Chemical Industry  相似文献   

5.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

6.
Atom transfer radical polymerization (ATRP) was employed to prepare graft copolymers having poly(MBr)‐alt‐poly(St) copolymer as backbone and poly(methyl methacrylate) (PMMA) as branches to obtain heat resistant graft copolymers. The macroinitiator was prepared by copolymerization of bromine functionalized maleimide (MBr) with styrene (St). The polymerization of MMA was initiated by poly(MBr)‐alt‐poly(St) carrying bromine groups as macroinitiator in the presence of copper bromide (CuBr) and bipyridine (bpy) at 110°C. Both macroinitiator and graft copolymers were characterized by 1H NMR, GPC, DSC, and TGA. The ATRP graft copolymerization was supported by an increase in the molecular weight (MW) of the graft copolymers as compared to that of the macroinitiator and also by their monomodal MW distribution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

7.
Amphiphilic ABA triblock copolymers of poly(ethylene oxide) (PEO) with methyl methacrylate (MMA) were prepared by atom transfer radical polymerization in bulk and in various solvents with a difunctional PEO macroinitiator and a Cu(I)X/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalyst system at 85°C where X=Cl or Br. The polymerization proceeded via controlled/living process, and the molecular weights of the obtained block copolymers increased linearly with monomer conversion. In the process, the polydispersity decreased and finally reached a value of less than 1.3. The polymerization followed first‐order kinetics with respect to monomer concentration, and increases in the ethylene oxide repeating units or chain length in the macroinitiator decreased the rate of polymerization. The rate of polymerization of MMA with the PEO chloro macroinitiator and CuCl proceeded at approximately half the rate of bromo analogs. A faster rate of polymerization and controlled molecular weights with lower polydispersities were observed in bulk polymerization compared with polar and nonpolar solvent systems. In the bulk polymerization, the number‐average molecular weight by gel permeation chromatography (Mn,GPC) values were very close to the theoretical line, whereas lower than the theoretical line were observed in solution polymerizations. The macroinitiator and their block copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, thermogravimetry (TG)/differential thermal analysis (DTA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). TG/DTA studies of the homo and block copolymers showed two‐step and multistep decomposition patterns. The DSC thermograms exhibited two glass‐transition temperatures at ?17.7 and 92°C for the PEO and poly(methyl methacrylate) (PMMA) blocks, respectively, which indicated that microphase separation between the PEO and PMMA domains. SEM studies indicated a fine dispersion of PEO in the PMMA matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 989–1000, 2005  相似文献   

8.

Abstract  

The synthesis of new poly(ε-caprolactone)(PCL)-b-poly(vinyl acetate)(PVAc) block copolymers was investigated using different combinations of click chemistry, reversible addition-fragmentation transfer (RAFT), and ring opening polymerization (ROP) techniques. Two approaches, “coupling” and “macroinitiator” routes were studied. For the coupling approach, a chain transfer agent comprising an azide function was synthesized and used as initiator for the VAc polymerization. PCL containing an alkyne termination was obtained from a bifunctional initiator bearing an alkyne function and an hydroxyl group. These two functionalized precursors, PVAc and PCL, were coupled by a 1,3 cyclo addition reaction “click chemistry” in order to obtain the corresponding block copolymer. For the macroinitiator approach, PCL-b-PVAc block copolymers were synthesized using a two-step procedure: at first, a PCL macroinitiator with a xanthate end group was prepared by coordinated anionic polymerization of ε-caprolactone; then, the RAFT polymerization of VAc was initiated from the PCL, for the preparation of PCL-b-PVAc block copolymers. Whatever the method used, no detectable quantities of unreacted PVAc or PCL were observed. 1H NMR and size exclusion chromatography analyses indicated successful synthesis of the block copolymers with well-defined structures.  相似文献   

9.
In this study a series of novel semifluorinated ABA triblock copolymers with different fluorinated segment lengths and different fluorocarbon side‐chain structures were synthesized via atom transfer radical polymerization (ATRP) and macroinitiator techniques. The macroinitiator, telechelic bromine terminated polystyrene, was obtained from bulk ATRP of styrene with α,α′‐dibromo‐p‐xylene as the initiator and cuprous bromide/α,α′‐bispyridine complex as the catalyst. The polymerization reactions of 2‐[(perfluorononenyl)oxy] ethyl methacrylate and ethylene glycol monomethacrylate monoperfluorooctanoate were initiated by the macroinitiator in the presence of additional catalyst. The characterization of the block copolymers was performed by gel permeation chromatography, 1H‐NMR spectroscopy, and differential scanning calorimetry. The surface activities of the block copolymers in toluene were investigated with the Wilhelmy plate method. The solid surface energy of the block copolymers was determined by measurement of the contact angles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2625–2633, 2002  相似文献   

10.
Multi‐arm star polystyrenes with hyperbranched polyester (HP3) core were prepared by atom transfer radical polymerization (ATRP). The structures of the polymers were investigated with FTIR and 1H NMR. GPC results showed that the resultant polymers had relatively broad polydispersity indices that arouse from the macromolecular initiator (HP3‐Br). The thermal properties were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis indicated that polystyrene star polymers had only the glass transition temperatures (Tg), which changes with the weight ratio of multi‐functional macroinitiator‐to‐monomer. In addition, these star polymers could form the spherical micelles in the selected solvent (THF/n‐hexane). © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 728–733, 2006  相似文献   

11.
Amphiphilic block comb‐shaped copolymers, poly[poly(ethylene oxide) methyl ether acrylate]‐block‐polystyrene [P(A‐MPEO)‐block‐PSt] with PSt as a handle, were successfully synthesized via a macromonomer technique. The reaction of MPEO with acryloyl chloride yielded a macromonomer, A‐MPEO. The macroinitiator PSt capped with the dithiobenzoate group (PSt‐SC(S)Ph) was prepared by reversible addition–fragmentation transfer (RAFT) polymerization of styrene in the presence of benzyl dithiobenzoate, and used as macroinitiator in the controlled radical block copolymerization of A‐MPEO at room temperature under 60Co irradiation. After the unreacted macromonomer A‐MPEO had been removed by washing with hot saturated saline water, block comb‐shaped copolymers were obtained. Their structure was characterized by 1H NMR spectroscopy and gel permeation chromatography. The phase transition and self‐assembling behaviour were investigated by atomic force microscope and differential scanning calorimetry. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Weizhi Wang 《Polymer》2009,50(5):1236-494
A series of well-defined novel water-soluble diblock copolymers containing conjugated amino-terminal polyfluorene (PF) block and coil-like poly(N-isopropylacrylamide) (PNIPAM) have been successfully synthesized through atom transfer radical polymerization (ATRP) initiated by a 2-bromoisobutyrate end-capped PF macroinitiator using CuCl/HMTETA (1,1,4,7,10,10-hexamethyltriethylenetetramine) as the catalyst. The first-order kinetic plots indicate the presence of a constant number of active species during the polymerization. The molecular weight and molecular weight distribution can be well controlled, implying synthesis of well-defined block structures of the copolymers. The chemical structures of block copolymers have been characterized by 1H NMR, UV-vis, and photoluminescence (PL) spectra. PF aggregates are formed in water with the increase of temperature for the conjugated-ionic diblock copolymer synthesized, as confirmed by dynamic light scattering (DLS). The formation of excimers within the PF aggregates results in improved Förster resonance energy transfer (FRET) efficiencies.  相似文献   

13.
To diversify edible-oil polymer composite, polymeric linoleic acid (PLina) peroxide was obtained by the auto-oxidation of linoleic acid in a simple way for use as a macroinitiator in free radical polymerization of vinyl monomers. Peroxidation, epoxidation, and/or perepoxidation reactions of linoleic acid under air at room temperature resulted in PLina, having soluble fraction more than 91 weight percent (wt%), with molecular weight ranging from 1,644 to 2,763 Da, and containing up to 1.0 wt% of peroxide. PLina initiated the free radical polymerization of ether styrene (S), methyl methacrylate (MMA), or n-butyl methacrylate (nBMA) to give PLina-g-polystyrene (PS), PLina-g-poly-MMA (PMMA), and PLina-g-poly- nBMA (PnBMA) graft copolymers. The polymers obtained were characterized by proton nuclear magnetic resonance (1H NMR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) techniques. Microstructure of the graft copolymers was observed by using scanning electron microscope (SEM). Graft copolymers obtained contained polymeric linoleic acid in a range between 8.5 and 19.3 mol percent (mol%). PLina-g-PS, PLina-g-PMMA and PLina-g-PnBMA graft copolymer samples were also used in cell culture studies. Fibroblast and macrophage cells were strongly adhered and spread on the copolymer film surfaces. These newly synthesized copolymers were tested for their effects on human blood protein adsorption compared with PMMA graft copolymers containing polymeric soybean oil and polymeric linseed oil; interestingly we observed a dramatic decrease in the protein adsorption on the linoleic acid graft copolymer, which is important in tissue engineering.  相似文献   

14.
Star-shaped PMMA-b-PS block copolymers with POSS core were prepared by atom transfer radical polymerization of St using star-shaped POSS/PMMA-Cl as a macroinitiator in presence of CuCl, 2,2,-bipyridine, toluene at 110 °C. The core-first method, which used an active multifunctional core to initiate the growth of polymer chains, was applicable to making star-shaped block copolymers with POSS core. The structure of hybrid star-shaped PMMA-b-PS block copolymers was characterized by GPC and 1H NMR, respectively.  相似文献   

15.
Core cross-linked amphiphilic star-block copolymers were prepared by hydrolysis of the outer shell of star-block copolymers prepared using copper mediated atom transfer radical polymerization (ATRP). In an arm-first approach, linear poly(tert-butyl methacrylate) macroinitiators (PtBMA-Cl) were extended with styrene to yield PtBMA-b-PS-Cl and then cross-linked with divinylbenzene (DVB) in order to yield (PtBMA-b-PS)arms-PDVBcore star-block copolymers. Then, PMAA-b-PS block and (PMAA-PS)arms-PDVBcore star-block copolymers were obtained by hydrolysis of the PtBMA blocks in both linear and cross-linked copolymers, as confirmed by 1H NMR analyses. The amphiphilic character of these copolymers was confirmed by solubilisation in water. Several factors affecting the polymer aggregation and solubility such as the length, the composition of the arms and the catalyst used were studied. An acrylate analogue, that is, (PAA-b-PS)arms-PDVBcore, was also prepared for comparison purposes. Atomic force microscopy (AFM) and differential scanning calorimetry (DSC) were used to elucidate the morphology and the thermal behaviour of the star-block copolymers.  相似文献   

16.
The synthesis of diblock copolymers using atom transfer radical polymerization, ATRP, of n‐butyl methacrylate, BMA, and methyl methacrylate, MMA, is reported. These copolymers were prepared from 2‐bromoisobutyryl‐terminated macroinitiators of poly(MMA) and poly(BMA), using copper chloride, CuCl,/N,N,N′,N″,N″‐pentamethyldiethylenetretramine, PMDETA, as the catalyst system, at 100°C in bulk and in benzonitrile solution. The block copolymers were characterized by means of size‐exclusion chromatography, SEC, and 1H‐NMR spectroscopy. The SEC analysis of the synthesized diblock copolymers confirmed important differences in the molecular weight control depending on the reaction medium (solvent effect) and the chemical structure of the macroinitiator used. In addition, differential scanning calorimetry, (DSC) measurements were performed, showing for all the copolymers a phase separation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2683–2691, 2002  相似文献   

17.
Ran Liu  Dan Yuan  Qing Wu  Fangming Zhu 《Polymer》2011,52(2):356-5665
We report on the synthesis and self-assembly of a novel well-defined miktoarm star copolymer of (polyethylene)2−(polystyrene)2, (PE)2−(PS)2, with two linear crystalline PE segments and two PS segments as the building blocks based on chain shuttling ethylene polymerization (CSEP), click reaction and atom transfer radical polymerization (ATRP). Initially, alkynyl-terminated PE (PE-) was synthesized via the esterification of pentynoic acid with hydroxyl-terminated PE (PE−OH), which was prepared using CSEP with 2,6-bis[1-(2,6-dimethylphenyl) imino ethyl] pyridine iron (II) dichloride/methylaluminoxane/diethyl zinc and subsequent in situ oxidation with oxygen. (PE)2−(OH)2 was then obtained by the click reaction of PE- with diazido and dihydroxyl containing coupling agent. The two hydroxyl groups in (PE)2−(OH)2 were then converted into bromisobutyrate by esterification. At last, the (PE)2−(PS)2 miktoarm star copolymers were synthesized by ATRP of styrene initiated from (PE)2−Br2 macroinitiator. All the intermediates and final products were characterized by 1H NMR and gel permeation chromatography (GPC). The self-assembly behavior was studied by dynamic light scattering (DLS) and atomic force microscopy (AFM). The crystallization of the (PE)2−(PS)2 miktoarm star copolymers was studied by differential scanning calorimetry (DSC).  相似文献   

18.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The synthesis of novel copolymers consisting of a side‐group liquid‐crystalline backbone and poly (methyl methacrylate) grafts were realized by the use of atom transfer radical polymerization (ATRP). In the first stage, the bromine‐functional copolymers 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate and (2,5‐dioxo‐2,5‐dihydro‐1H‐pyrrole‐1‐yl)methyl 2‐bromopropanoate were synthesized by free‐radical polymerization. These copolymers were used as initiators in the ATRP of methyl methacrylate to yield graft copolymers. Both the macroinitiator and graft copolymers were characterized by 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. The ATRP graft copolymerization was supported by an increase in the molecular weight of the graft copolymers compared to that of the macroinitiator and also by their monomodal molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Star‐block copolymers comprised of poly(styrene) (S) core and four poly(ε‐caprolacton) (ε‐CL) arms were synthesized by the combination of free radical polymerization (FRP) of S and ring opening polymerization (ROP) of ε‐CL in one‐step in the presence of tetrafunctional ineferter. The block copolymers were characterized by 1H‐NMR and FTIR spectroscopy, gel permeation chromatography (GPC), and fractional precipitation method. 1H ‐NMR and FTIR spectroscopy and GPC studies of the obtained polymers indicate that star‐block copolymers easily formed as result of combination FRP and ROP in one‐step. The γ values (solvent/precipitant volume ratio) were observed between 1.04–2.72 (mL/mL) from fractional measurements. The results show that when the initial S feed increased, the molecular weights of the star‐block copolymers also increased and the polydispersities of the polymers decreased. Mw/Mn values of the products were measured between 1.4 and 2.86 from GPC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号