首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, high-performance, light-stimulation healable, and closed-loop recyclable covalent adaptable networks are successfully synthesized from natural lignin-based polyurethane (LPU) Zn2+ coordination structures (LPUxZy). Using an optimized LPU (LPU-20 with a tensile strength of 28.4 ± 3.5 MPa) as the matrix for Zn2+ coordination, LPUs with covalent adaptable coordination networks are obtained that have different amounts of Zn. When the feed amount of ZnCl2 is 9 wt%, the strength of LPU-20Z9 reaches 37.3 ± 3.1 MPa with a toughness of 175.4 ± 4.6 MJ m−3, which is 1.7 times of that of LPU-20. In addition, Zn2+ has a crucial catalytic effect on “dissociation mechanism” in the exchange reaction of LPU. Moreover, the Zn2+-based coordination bonds significantly enhance the photothermal conversion capability of lignin. The maximum surface temperature of LPU-20Z9 reaches 118 °C under the near-infrared illumination of 0.8 W m−2. This allows the LPU-20Z9 to self-heal within 10 min. Due to the catalytic effect of Zn2+, LPU-20Z9 can be degraded and recovered in ethanol completely. Through the investigation of the mechanisms for exchange reaction and the design of the closed-loop recycling method, this work is expected to provide insight into the development of novel LPUs with high-performance, light-stimulated heal ability, and closed-loop recyclability; which can be applied toward the expanded development of intelligent elastomers.  相似文献   

2.
A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5Zn8, whose depth is controlled to retain the large pores for a hydraulic permeability ≈10−11 m2. Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs–Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn–I2 flow battery at 60 mAh cm−2 and 60 mA cm−2, performance that meets practical demands.  相似文献   

3.
Lightweight structural materials with high strength are desirable for advanced applications in transportation, construction, automotive, and aerospace. Bamboo is one of the fastest growing plants with a peak growth rate up to 100 cm per day. Here, a simple and effective top-down approach is designed for processing natural bamboo into a lightweight yet strong bulk structural material with a record high tensile strength of ≈1 GPa and toughness of 9.74 MJ m−3. More specifically, bamboo is densified by the partial removal of its lignin and hemicellulose, followed by hot-pressing. Long, aligned cellulose nanofibrils with dramatically increased hydrogen bonds and largely reduced structural defects in the densified bamboo structure contribute to its high mechanical tensile strength, flexural strength, and toughness. The low density of lignocellulose in the densified bamboo leads to a specific strength of 777 MPa cm3 g−1, which is significantly greater than other reported bamboo materials and most structural materials (e.g., natural polymers, plastics, steels, and alloys). This work demonstrates a potential large-scale production of lightweight, strong bulk structural materials from abundant, fast-growing, and sustainable bamboo.  相似文献   

4.
Low-cost and high-safety aqueous Zn-ion batteries are an exceptionally compelling technology for grid-scale energy storage. However, their development has been plagued by the lack of stable cathode materials allowing fast Zn2+-ion insertion and scalable synthesis. Here, a lattice-water-rich, inorganic-open-framework (IOF) phosphovanadate cathode, which is mass-producible and delivers high capacity (228 mAh g−1) and energy density (193.8 Wh kg−1 or 513 Wh L−1), is reported. The abundant lattice waters functioning as a “charge shield” enable a low Zn2+-migration energy barrier, (0.66 eV) even close to that of Li+ within LiFePO4. This fast intrinsic ion-diffusion kinetics, together with nanostructure effect, allow the achievements of ultrafast charging (71% state of charge in 1.9 min) and an ultrahigh power density (7200 W kg−1 at 107 Wh kg−1). Equally important, the IOF exhibits a quasi-zero-strain feature (<1% lattice change upon (de)zincation), which ensures ultrahigh cycling durability (3000 cycles) and Coulombic efficiencies of 100%. The cell-level energy and power densities reach ≈90 Wh kg−1 and ≈3320 W kg−1, far surpassing commercial lead–acid, Ni–Cd, and Ni–MH batteries. Lattice-water-rich IOFs may open up new opportunities for exploring stable and fast-charging Zn-ion batteries.  相似文献   

5.
Conductive polymer hydrogels (CPHs) are widely employed in emerging flexible electronic devices because they possess both the electrical conductivity of conductors and the mechanical properties of hydrogels. However, the poor compatibility between conductive polymers and the hydrogel matrix, as well as the swelling behavior in humid environments, greatly compromises the mechanical and electrical properties of CPHs, limiting their applications in wearable electronic devices. Herein, a supramolecular strategy to develop a strong and tough CPH with excellent anti-swelling properties by incorporating hydrogen, coordination bonds, and cation-π interactions between a rigid conducting polymer and a soft hydrogel matrix is reported. Benefiting from the effective interactions between the polymer networks, the obtained supramolecular hydrogel has homogeneous structural integrity, exhibiting remarkable tensile strength (1.63 MPa), superior elongation at break (453%), and remarkable toughness (5.5 MJ m−3). As a strain sensor, the hydrogel possesses high electrical conductivity (2.16 S m−1), a wide strain linear detection range (0–400%), and excellent sensitivity (gauge factor = 4.1), sufficient to monitor human activities with different strain windows. Furthermore, this hydrogel with high swelling resistance has been successfully applied to underwater sensors for monitoring frog swimming and underwater communication. These results reveal new possibilities for amphibious applications of wearable sensors.  相似文献   

6.
It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc–air batteries (ZABs). Herein, a CoFe-S@3D-S-NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf-like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe-MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core–shell structure, and S, N-doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm−2), superior specific capacity (815 mA h gZn−1), and excellent stability at 5 mA cm−2 for ≈900 h. The quasi-solid-state ZABs also exhibit a very high peak power density of 490 mW cm−2 and an excellent voltage round-trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs.  相似文献   

7.
Photothermal steam generation promises decentralized water purification, but current methods suffer from slow water evaporation even at high photothermal efficiency of ≈98%. This drawback arises from the high latent heat of vaporization that is required to overcome the strong and extensive hydrogen bonding network in water for steam generation. Here, light-to-vapor conversion is boosted by incorporating chaotropic/kosmotropic chemistries onto plasmonic nanoheater to manipulate water intermolecular network at the point-of-heating. The chaotropic-plasmonic nanoheater affords rapid light-to-vapor conversion (2.79 kg m−2 h−1 kW−1) at ≈83% efficiency, with the steam generation rate up to 6-fold better than kosmotropic platforms or emerging photothermal designs. Notably, the chaotropic-plasmonic nanoheater also lowers the enthalpy of water vaporization by 1.6-fold when compared to bulk water, signifying that a correspondingly higher amount of steam can be generated with the same energy input. Simulation studies unveil chaotropic surface chemistry is crucial to disrupt water hydrogen bonding network and suppress the energy barrier for water evaporation. Using the chaotropic-plasmonic nanoheater, organic-polluted water is purified at ≈100% efficiency, a feat otherwise challenging in conventional treatments. This study offers a unique chemistry approach to boost light-driven steam generation beyond a material photothermal property.  相似文献   

8.
Anthropogenic nitrate pollution has an adverse impact on the environment and human health. As part of a sustainable nitrate management strategy, electrochemical denitrification is studied as an innovative strategy for nutrients recycling and recovering. It is, however, challenging to selectively electro-reduce nitrate with low-concentration for ammonia. Herein, the photo-deposition of size-defined Ru nanoclusters (NCs, average size: ≈1.66 nm) on TiO2 nanotubes (NTs) is demonstrated, which show improved performance for nitrate-to-ammonia electroreduction with a maximum yield rate of ≈600 µg h−1 cm−2 and a faradic efficiency (FE) of > 90.0% across a broad range of potentials in comparison with electrodeposited Ru nanoparticles (NPs, average size: ≈23.78 nm) on TiO2 NTs. Experimental and theoretical evidence further suggests the small-size Ru NCs with the intrinsically enhanced selectivity and activity because of the strong metal/substrate interaction and unsaturated coordination state. The findings highlight the size effect on Ru-based catalyst supported on metal oxides, a versatile catalytic model, which allows the regulation of hydrogen adsorption to favor ammonia production over the competing hydrogen evolution reaction.  相似文献   

9.
A simple and scalable method to fabricate a novel high-energy asymmetric supercapacitor using tomato-leaf-derived hierarchical porous activated carbon (TAC) and electrochemically deposited polyaniline (PANI) for a battery-free heart-pulse-rate monitor is reported. In this study, TAC is prepared by simple pyrolysis, exhibiting nanosheet-type morphology and a high specific surface area of ≈1440 m2 g−1, and PANI is electrochemically deposited onto carbon cloth. The TAC- and PANI- based asymmetric supercapacitor demonstrates an electrochemical performance superior to that of symmetric supercapacitors, delivering a high specific capacitance of 248 mF cm−2 at a current density of 1.0 mA cm−2. The developed asymmetric supercapacitor shows a high energy density of 270 µWh cm−2 at a power density of 1400 µW cm−2, as well as an excellent cyclic stability of ≈95% capacitance retention after 10 000 charging–discharging cycles while maintaining ≈98% Coulombic efficiency. Impressively, the series-connected asymmetric supercapacitors can operate a battery-free heart-pulse-rate monitor extremely efficiently upon solar-panel charging under regular laboratory illumination.  相似文献   

10.
Electrostatic capacitors are emerging as a highly promising technology for large-scale energy storage applications. However, it remains a significant challenge to improve their energy densities. Here, an effective strategy of introducing non-isovalent ions into the BiFeO3-based (BFO) ceramic to improve energy storage capability via delaying polarization saturation is demonstrated. Accordingly, an ultra-high energy density of up to 7.4 J cm−3 and high efficiency ≈ 81% at 680 kV m−1 are realized, which is one of the best energy storage performances recorded for BFO-based ceramics. The outstanding comprehensive energy storage performance is attributed to inhibiting the polarization hysteresis resulting from generation ergodic relaxor zone and random field, and generating highly-delayed polarization saturation with continuously-increased polarization magnitudes with the electric field of supercritical evolution. The contributions demonstrate that delaying the polarization saturation is a consideration for designing the next generation of lead-free dielectric materials with ultra-high energy storage performance.  相似文献   

11.
Solar desalination is one of the most promising strategies to address the global freshwater shortage crisis. However, the residual salt accumulated on the top surface of solar evaporators severely reduces light absorption and steam evaporation efficiency, thus impeding the further industrialization of this technology. Herein, a metal–phenolic network (MPN)-engineered 3D evaporator composed of photothermal superhydrophilic/superhydrophobic sponges and side-twining hydrophilic threads for efficient desalination with directional salt crystallization and zero liquid discharge is reported. The MPN coatings afford the engineering of alternating photothermal superhydrophilic/superhydrophobic sponges with high heating efficiency and defined vapor escape channels, while the side-twining threads induce site-selective salt crystallization. The 3D evaporator exhibits a high and stable indoor desalination rate (≈2.3 kg m−2 h−1) of concentrated seawater (20 wt%) under simulated sun irradiation for over 21 days without the need for salt crystallization inhibitors. This direct desalination is also achieved in outdoor field operations with a production rate of clean water up to ≈1.82 kg m−2 h−1 from concentrated seawater (10 wt%). Together with the high affinity and multiple functions of MPNs, this work is expected to facilitate the rational design of solar desalination devices and boost the research translation of MPN materials in broader applications.  相似文献   

12.
Covalent thermosets generally exhibit robust mechanical properties, while they are fragile and lack the ability to be reprocessed or recycled. Herein, a new strategy of incorporating noncovalent bonds into main-chains is developed to construct tough and multi-recyclable cross-linked supramolecular polyureas (CSPU), which are prepared via the copolymerization of diisocyanate monomers, noncovalently bonded diamine monomers linked by quadruple hydrogen bonds, and covalent diamine/triamine monomers. The CSPU exhibit remarkable solvent resistance and outstanding mechanical properties owing to the covalent cross-linking via triamine monomer. Through the incorporation of 9.7% and 14.6% quadruple hydrogen bonded diamine monomer, the transparent CSPU films are endowed with superior toughness of 74.17 and 124.17 MJ m−3, respectively. Impressively, even after five generations of recycling processes, the mechanical properties of reprocessed CSPU can recover more than 95% of their original properties, displaying excellent multiple recyclablity. As a result, the superior toughness, remarkable solvent resistance, high transparency, and excellent multiple recyclability are well-combined in the CSPU. It is highly anticipated that this line of research will provide a facile and general method to construct various cross-linked polymer materials with superior recyclability and mechanical properties.  相似文献   

13.
《Materials Letters》2006,60(9-10):1265-1268
Al2O3/Ni laminated composites were prepared by aqueous tape casting and hot pressing with intent to study mechanical properties including the fracture strength and toughness. The residual stress was evaluated and proved. The relations of mechanical properties with the thermal residual stress, the ductility of metal layers and the layer thickness ratio were studied, respectively. It was found that the toughness and work of fracture of Al2O3/Ni laminar reached to 12.56 MPa m1/2 and 12 450 J m 2, which are 3.6 and 478.8 times that of pure Al2O3.  相似文献   

14.
The development of trifunctional electrocatalyst for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) with deeply understanding the mechanism to enhance the electrochemical performance is still a challenging task. In this work, the distorted metastable hybrid-phase induced 1T′/1T Co,P SnS2 nanosheets on carbon cloth (1T′/1T Co,P SnS2@CC) is prepared and examined. The density functional theoretical (DFT) calculation suggests that the distorted 1T′/1T Co,P SnS2 can provide excellent conductivity and strong hydrogen adsorption ability. The electronic structure tuning and enhancement mechanism of electrochemical performance are investigated and discussed. The optimal 1T′/1T Co,P SnS2@CC catalyst exhibits low overpotential of ≈94 and 219.7 mV at 10 mA cm−2 for HER and OER, respectively. Remarkably, the catalyst exhibits exceptional ORR activity with small onset potential value (≈0.94 V) and half-wave potential (≈0.87 V). Most significantly, the 1T′/1T Co,P SnS2||Co,P SnS2 electrolyzer required small cell voltages of ≈1.53, 1.70, and 1.82 V at 10, 100, and 400 mA cm−2, respectively, which are better than those of state-of-the-art Pt-C||RuO2 (≈1.56 and 1.84 V at 10 and 100 mA cm−2). The present study suggests a new approach for the preparation of large-scalable, high performance hierarchical 3D next-generation trifunctional electrocatalysts.  相似文献   

15.
Strong and tough hydrogels are promising candidates for flexible electronics, biomedical devices, and so on. However, the conflict between improving the mechanical strength and toughness properties of polysaccharide-based hydrogels remains unsolved. Herein, a strategy is proposed to produce a hierarchically structured cellulose hydrogel that combines solution annealing and dual cross-linking treatment approaches. The solution annealing considerably increases the hydrophobic stacking and chemical cross-linking of the cellulose chains, thereby facilitating their subsequent self-assembly and recrystallization during the chemical and physical cross-linking processes. The cellulose hydrogels exhibit superposed chemically and physically cross-linked domains comprising homogeneous nanoporous network structures, which in turn are composed of interconnected cellulose nanofibers and cellulose II crystallite hydrates. These cellulose hydrogels exhibit a high water content of 76–84% and excellent mechanical properties that compare favorably to those of biomacromolecule-based hydrogels. The prepared hydrogels exhibit a mechanical strength and work of fracture of 21 ± 3 MPa and 2.6 ± 0.4 MJ m−3 under compression, and 7.2 ± 0.7 MPa and 5.9 ± 0.6 MJ m−3 under tension, respectively. It is anticipated that this strategy will be applicable to other biomacromolecules and crystalline polymers, and that it will enable the construction of other hydrogels exhibiting high mechanical performances.  相似文献   

16.
Defect engineering for vacancies, holes, nano precipitates, dislocations, and strain are efficient means of suppressing lattice thermal conductivity. Multiple microstructural defects are successfully designed in Cu1-xAgxGaTe2 (0 ≤ x ≤ 0.5) solid solutions through high-ratio alloying and vibratory ball milling, to achieve ultra-low thermal conductivity and record-breaking thermoelectric performance. Extremely low total thermal conductivities of 1.28 W m−1 K−1 at 300 K and 0.40 W m−1 K−1 at 873 K for the Cu0.5Ag0.5GaTe2 are observed, which are ≈79% and ≈58% lower than that of the CuGaTe2 matrix. Multiple phonon scattering mechanisms are collectively responsible for the reduction of thermal conductivity in this work. On one hand, large amounts of nano precipitates and dislocations are formed via vibrating ball milling followed by the low-temperature hot press, which can enhance phonon scattering. On the other hand, the difference in atomic sizes, distorted chemical bonds, elements fluctuation, and strained domains are caused by the high substitution ratio of Ag and also function as a center for the strong phonon scattering. As a result, the Cu0.7Ag0.3GaTe2 exhibits a record high ZTmax of ≈1.73 at 873 K and ZTave of ≈0.69 between 300–873 K, which are the highest values of CuGaTe2-based thermoelectric materials.  相似文献   

17.
1D van der Waals (vdW) materials have attracted significant interest in recent years due to their giant anisotropic and weak interlayer-coupled characters. More 1D vdW materials are urgently to be exploited for satisfying the practice requirement. Herein, the study of 1D vdW ternary HfSnS3 high-quality single crystals grown via the chemical vapor transport technique is reported. The Raman vibration modes and band structure of HfSnS3 are analyzed via DFT calculations. Its strong in-plane anisotropic is verified by the polarized Raman spectroscopy. The field-effect transistors (FETs) based on the HfSnS3 nanowires demonstrate p-type semiconducting behavior as well as outstanding photoresponse in a broadband range from UV to near-infrared (NIR) with short response times of ≈0.355 ms, high responsivity of ≈11.5 A W−1, detectivity of ≈8.2 × 1011, external quantum efficiency of 2739%, excellent environmental stability, and repeatability. Furthermore, a typical photoconductivity effect of the photodetector is illustrated. These comprehensive characteristics can promote the application of the p-type 1D vdW material HfSnS3 in optoelectronics.  相似文献   

18.
A liquid membrane based Zn2+ ion selective electrode containing N,N′-Bis(2-dimethylaminoethyl)-N,N′-dimethyl-9,10 anthracenedimethanamine (Bis(TMEDA) anthracene) (I) as ionophore has been prepared and characterized. The membrane comprises of PVC, ionophore and plasticizer in the ratio of 33:2:65, respectively. It showed the best response in terms of detection limit (1.5 × 10 6 M) and working concentration range (1.0 × 10 5 M to 1.0 × 10 1 M) with Nernstian response towards Zn2+ ions. The electrode responds within 15 s of coming in contact with the solution. The potential response remains almost unchanged over a pH range of 3.0 to 7.5. The electrode can be used for at least 3 months without any considerable alteration in its response behavior. The proposed electrode revealed good selectivity towards Zn2+ ions over a number of alkali, alkaline earth, transition metals and some other heavy metal ions. The electrode has been used as an indicator electrode in the potentiometric titration of Zn2+ with EDTA. The proposed electrode also detected Zn2+ ions from real life samples.  相似文献   

19.
1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m2 g−1), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g−1 at 1.0 A g−1), excellent rate capability, high energy density (11.6 W h kg−1 at a power density of 313 W kg−1), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g−1). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.  相似文献   

20.
Polysilicon granular beads grown via a fluidized bed reactor, a feedstock for silicon solar cell production, were annealed, sectioned, and indented using a combination of nanoindentation and microhardness testing to determine the mechanical response of this commercially available raw material. The granular material, with macroscopic dimensions on the order of millimeters and an internal grain size on the order of 20 nm, has an indentation modulus of approximately 160 GPa, and a hardness prior to fracture of 9.6 GPa; these values are relatively insensitive to annealing at temperatures between 600 and 1100 °C. Indentation fracture testing suggests the toughness of this material is on the order of 0.6 MPa m1/2. The fracture sequence has been verified using acoustic emission testing during indentation. Annealing in air at 600 °C for 3 days increases the toughness by approximately 50% with little change in grain size. The as grown material contains solute hydrogen, identified by infrared spectroscopy, from the growth process; annealing in air tends to remove solute hydrogen from the material at temperatures above 1050 °C. The removal of solute hydrogen appears to cause slight increases in toughness, while grain growth at elevated annealing temperatures or the formation of hydrogen complexes in the silicon appears to decrease toughness. The results suggest thermal treatments of silicon grown with this method can moderately alter the friability of the final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号