首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, we mainly investigate the solid‐state foaming of polyether ether ketone (PEEK) with different crystallinities using supercritical CO2 as a physical blowing agent. The gaseous mass‐transfer and thermophysical behaviors were studied. By altering the parameters of the foaming process, microcellular foams with different cell morphologies were prepared. The effect of crystallization on the cell morphology was also investigated in detail. The results indicate that the crystallization restricts gas diffusion in the material, and the thermophysical behaviors of the saturated PEEK sample with low crystallinity presents two cold crystallization peaks. The cell density decreases and the cell size increases as the saturation pressure increases. The cell density of the microcellular foams prepared under 20 MPa is 1.23 × 1010 cells/cm3, which is almost 10 times compares to that under 8 MPa. The cell size increases as the foaming time extends or the foaming temperature increases. It is interesting that the cell morphology with a bimodal cell‐size distribution is generated when the samples are foamed at temperatures higher than 320°C for a sufficient time. Additionally, nanocellular foams can be obtained from a highly crystallized PEEK after the decrystallization process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42576.  相似文献   

2.
Currently, the fabrication of microcellular semicrystalline polymer foam using supercritical CO2 as a blowing agent constitutes a worldwide interest. In this work, a facile approach of chain extension and batch foaming was proposed to prepare microcellular semicrystalline poly (butylene adipate-co-terephthalate) (PBAT) foam using CO2 as a physical blowing agent. With the introduction of chain extender (CE), the weight-average molecular weight and gel fraction of PBAT samples increased; their crystallization temperature increased from 74.2 to 86.9 °C and their viscoelasticity was improved greatly. Microcellular PBAT foams with the cell size <4 μm and the cell density more than 1010 cells cm−3 were fabricated successfully. With increasing concentration of CE, the cell density and volume expansion ratio (VER) of various PBAT foams increased from 3.4 × 1010 to 8.7 × 1010 cells cm−3 and from 1.5 to 2.0 times, respectively. With increasing foaming temperature, the cell size and VER increased and the cell density decreased. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47322.  相似文献   

3.
Supercritical CO2 as a blowing agent has attracted increasing interest in the preparation of microcellular polyamide 6 (PA6) foams. In this work, we developed the supercritical CO2-assisted method to prepare a series of different microcellular PA6 foams by controlling its crystallization properties in two steps and carefully investigated the corresponding crystallization properties of modified PA6 and foams using various techniques. Initially, a multifunctional epoxy-based chain extender (CE) was used to produce high-melt strength-modified PA6 with improved foaming ability; then, the resulting PA6 was foamed to prepare the microcellular foams of PA6 using supercritical CO2 as a blowing agent in a batch foaming route. The CE effectively enhanced the melt strength of PA6, and CE usage was optimized to obtain a threshold of high branching without crosslinking. The number of crystals was also adjusted by the saturation temperature. Furthermore, these crystals that formed during the saturation process served as high-efficiency bubble nucleating agents and then limited the growth of bubbles at the same time. The microcellular foams of PA6 were successfully obtained with a cell size of 10.0 μm, and cell density of 2.0 × 109 cells/cm3 at the saturation temperature of 225°C.  相似文献   

4.
以聚丁二酸丁二醇酯(PBS)为基体,加入不同含量的扩链剂,通过熔融共混法制备扩链PBS样品。随后以超临界CO2作为物理发泡剂,通过釜压发泡法在87 ℃下对PBS进行物理发泡。结果表明,随着扩链剂含量的增加,PBS的结晶温度先升高后略微下降,结晶度略微提高,黏弹性改善;随着扩链剂含量的增加,泡孔尺寸和发泡倍率逐渐减小,泡孔密度逐渐增加;当扩链剂含量为8 %(质量分数,下同)时制备的扩链PBS微孔泡沫的泡孔尺寸为9.2 μm,泡孔密度为1.93×109 个/cm3。  相似文献   

5.
The preparation of microcellular poly(ether imide) (PEI) based foams with three-dimensional geometry remains a great challenge worldwide. In this study, we fabricated microcellular PEI–carbon nanotube (CNT) bead foams with a batch rapid depressurization method in a self-designed mold with supercritical carbon dioxide (scCO2) as a blowing agent. The effects of the saturation time, foaming temperature, foaming pressure, and depressurization rate on the microcellular structures of the PEI foam were analyzed by the Taguchi approach to determine the optimum foaming conditions, and the influence of the CNT content on the cell structure was analyzed. The results show that the depressurization rate and foaming temperature were the key factors influencing the cell size and cell density (N f); that is, the high depressurization rate and low foaming temperature favored a small cell size and high N f. The foaming temperature also influenced the foaming ratio (ϕ), and a high ϕ was obtained at a high foaming temperature. Under optimal foaming conditions, PEI with 2.0 wt % CNTs presented the best cell structure; N f, cell size, and ϕ were 6.14 × 1010 cell/cm3, 2.43 μm, and 2.08, respectively. The mechanical properties of the final parts were related more to the foaming time and CNT concentration, and the maximum tensile and compression strength were reached at 3 h foaming time and 2.0 wt % CNT, that is, at 2.75 and 15.1 MPa (10% strain), respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47501.  相似文献   

6.
This article reports an attempt to improve polypropylene (PP) microcellular foaming through the blending of PP with high‐density polyethylene (HDPE) as a minor component and the incorporation of nano‐calcium carbonate (nano‐CaCO3) into PP and its blends with HDPE. Three HDPEs were selected to form three blends with a viscosity ratio less than, close to, or greater than unity. Two concentrations of nano‐CaCO3, 5 and 20 wt %, were used. The blends and nanocomposites were prepared with a twin‐screw extruder. The foaming was carried out by a batch process with supercritical carbon dioxide as a blowing agent. The online shear viscosity during compounding and the dynamic rheological properties of some samples used for foaming were measured. The cell structure of the foams was examined with scanning electron microscopy (SEM), and the morphological parameters of some foams were calculated from SEM micrographs. The rheological properties of samples were used to explain the resulting cell structure. The results showed that the blend with a viscosity ratio close to unity produced a microcellular foam with the minimum mean cell diameter (0.7 μm) and maximum cell density (1.17 × 1011 cells/cm3) among the three blends. A foamed PP/nano‐CaCO3 composite with 5 wt % nano‐CaCO3 exhibited the largest cell density (8.4 × 1011 cells/cm3). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
This work presents the cellular microstructures and properties of PMMA/graphene nanoribbons (GNRs) microcellular foams. GNRs were obtained by oxidative unzipping multiwalled carbon nanotubes and solvent thermal reduction in dimethylformamide (DMF), then they were mixed with PMMA to fabricate PMMA/GNRs nanocomposites by solution blending. Subsequently, supercritical carbon dioxide (scCO2) as a friendly foaming agent was applied to fabricate PMMA/GNRs microcellular foam by a batch foaming in a special mold. The morphology of cell structure was analyzed by scanning electron microscopy and image software, showing that the addition of a smaller content of GNRs caused a fine cellular structure with a higher cell density (~3 × 1011 cells/cm3) and smaller cell sizes (~1 μm) due to their remarkable heterogeneous nucleation effect. The mechanical testing of PMMA/GNRs microcellular foams demonstrated that the obtained GNRs also could be used as a reinforcing filler to increase the mechanical properties of PMMA foams. An improvement in the compressive strength of ~80% (about 39% increase standardized by specific compressive strength) was achieved by 1.5 wt % GNRs addition, and the thermal stability of PMMA/GNRs foams was enhanced too. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45182.  相似文献   

8.
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO2 in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 × 10?5 cm2/s to 7.83 × 10?5 cm2/s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 μm and cell density exceeding 108 cells/cm3 are achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44807.  相似文献   

9.
Highly flexible and electrically conductive graphene nanoparticles/carbon black/silicon rubber (GNPs/CB/SR) based nanocomposite foams were formed by using azodicarbonamide (AC) physical foaming technology. The foaming parameters (foaming agent and foaming time) were analyzed to investigate the influence on the electrical properties and microcellular structure. The electrical percolation threshold of GNPs/CB/SR nanocomposite foams approximately decreases from 25% to 30%, as the volume expansion increases through foaming. Nanocomposite foams with conductive fillers of 3–12 wt %, foaming agent of 12–18 wt %, foaming time of about 150–500 s, relative densities of 1.0–0.4 g/cm3 were achieved, providing a scheme to evaluate the transformation of electrical properties with different foaming degree. It is worth noting that the product of AC agent concentration and foaming time reaches a certain value, and the highest electrical conductivity of foamed nanocomposites could be achieved. The nonmonotonicity changing of the electrical conductivity was demonstrated. Combined with the microtopography characterization, the cell growth effect was introduced to illustrate the transformation mechanism of the electrical conductivity. The relationship between the microcellular structure and the electrical conductivity of the foamed nanocomposites was established, which is essential for further optimizations of the foaming materials for the targeted application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45996.  相似文献   

10.
With maleic anhydride grafted polypropylene (PP‐g‐MAH) as a compatibilizer, composites of block‐copolymerized polypropylene (B‐PP)/nanoclay were prepared. The effects of the PP‐g‐MAH and nanoclay content on the crystallization and rheological properties of B‐PP were investigated. The microcellular foaming behavior of the B‐PP/nanoclay composite material was studied with a single‐screw extruder foaming system with supercritical (SC) carbon dioxide (CO2) as the foaming agent. The experimental results show that the addition of nanoclay and PP‐g‐MAH decreased the melt strength and complex viscosity of B‐PP. When 3 wt % SC CO2 was injected as the foaming agent for the extrusion foaming process, the introduction of nanoclay and PP‐g‐MAH significantly increased the expansion ratio of the obtained foamed samples as compared with that of the pure B‐PP matrix, lowered the die pressure, and increased the cell population density of the foamed samples to some extent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44094.  相似文献   

11.
Ethylene-propylene copolymer (EP) was functionalized with glycidyl methacrylate (GMA) by means of a radical-initiated melt grafting reaction. FTIR and ESCA were used to characterize the formation of EP-g-GMA copolymers. The content of GMA in EP-g-GMA was determined by using hydrochloric acid/xylene titration. Effects of concentrations of GMA and dicumyl peroxide on grafting rate were studied. It was found that contact angles of the water on surfaces of EP-g-GMA samples increased with increasing content of GMA in EP-g-GMA. The influence of the content of GMA on the crystallization structure of EP-g-GMA was investigated by DSC and WAXD. Compared with the plain EP, the crystallization temperature of propylene blocks of EP-g-GMA increased over 10 K, and the melting temperature and crystallinity decreased somewhat. Functionalization of EP led to the change of the crystal form of propylene blocks from the mixed form of α and β into the α form. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
In this study, polypropylene (PP) foams were prepared with cucurbit[6]uril (Q[6]) used as a novel nucleating agent through a microcellular injection molding foaming process. The effect of Q[6] content (0.5–2.0 wt %) on the foaming behavior, as well as thermal, rheological and mechanical characterizations of the PP/Q[6] (PQ) samples were performed. According to scanning electron microscopy (SEM) images, the microstructure of foams exhibited a smaller cell size, higher cell density, and more homogeneous distribution of cells at a higher Q[6] content. It was found that the peak temperature of crystallization, the crystallinity and the crystallization rate of PP can be obviously improved by adding a low content of Q[6] (0.25–1.0 wt %), whereas further increasing the content of Q[6] (2.0 wt %) would disfavor the effect. With increasing the Q[6] concentration, the PQ composites had higher complex viscosities at low frequencies and higher modulus than that of PP except the content of 2.0 wt %. Furthermore, the introduction of Q[6] into PP can produce a mild increase in tensile strength, flexural strength and impact strength of PQ foams. This can be due to the well dispersion of Q[6], good compatibility between PP and Q[6], as well as the improvement of the cell morphology. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44538.  相似文献   

13.
A series of microcellular poly(ether imide) (PEI) foams and nanocellular carboxylated multiwalled carbon nanotube (MWCNT‐COOH)/PEI foams were prepared by the batch foaming method. MWCNT‐COOHs with different aspect ratios were introduced into the PEI matrix as heterogeneous nucleation agents to improve the cell morphology of the microcellular PEI foams. The effect of the aspect ratio of the MWCNT‐COOHs on the cellular morphology, and gas diffusion is discussed. The results show that with the addition of MWCNT‐COOH, the sorption curve showed a slight reduction of carbon dioxide solubility, but the gas diffusion rate could be improved. The proper aspect ratio of MWCNT‐COOH could improve the cellular morphology under the same foaming conditions, in which m‐MWCNT‐COOH (aspect ratio ≈ 1333) was the best heterogeneous nucleation agent. When the foaming temperature was 170°C, the cell size and cell density of nanocellular m‐MWCNT‐COOH reduced to 180 nm and increased to 1.58 × 1013 cells/cm3, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42325.  相似文献   

14.
Controlling sandwich‐structure of poly(ethylene terephthalate) (PET) microcellular foams using coupling of CO2 diffusion and CO2‐induced crystallization is presented in this article. The intrinsic kinetics of CO2‐induced crystallization of amorphous PET at 25°C and different CO2 pressures were detected using in situ high‐pressure Fourier transform infrared spectroscopy and correlated by Avrami equation. Sorption of CO2 in PET was measured using magnetic suspension balance and the diffusivity determined by Fick's second law. A model coupling CO2 diffusion in and CO2‐induced crystallization of PET was proposed to calculate the CO2 concentration as well as crystallinity distributions in PET sheet at different saturation times. It was revealed that a sandwich crystallization structure could be built in PET sheet, based on which a solid‐state foaming process was used to manipulate the sandwich‐structure of PET microcellular foams with two microcellular or even ultra‐microcellular foamed crystalline layers outside and a microcellular foamed amorphous layer inside. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2512–2523, 2012  相似文献   

15.
In this study, the effects of nano Fe2O3 content and foaming temperature and time are investigated on the various structural and mechanical properties of polypropylene in a batch foaming process with CO2 using Taguchi approach. Cell size, relative density, and specific impact strength and hardness are considered as different criteria. The results indicated that the cell sizes are below 10 μm and a 20% improvement is observed in the microcellular nanocomposite samples containing 4 wt % nano Fe2O3. A 20% improvement is observed in specific impact strength by increasing 4 wt % of nano Fe2O3. Also, a simultaneous decision analysis is performed and the best sample with respect to considered structural and mechanical properties is selected using multi‐criteria decision making methods. The results demonstrated that the microcellular nanocomposite foams containing 4 wt % of nano Fe2O3 are the best samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46098.  相似文献   

16.
In this research, the effect of crystalline fraction of polypropylene (PP) on cell nucleation behavior was overcome by an introduction of solvent‐plasticized step to the microcellular foaming in a solid‐state batch‐foaming process. Utilizing the plasticization performance of the solvent facilitated the PP to be foamed at the temperatures lower than its melting point with the dramatic development in the cellular morphology of the final foams. In consequence of the heterogeneous cell nucleation sites induction and the crystalline loss, which were induced by solvent, a high cell density (i.e., 109–1010 cells/cm3) was promoted without the cell sacrificing at the elevated temperatures (155 and 165°C) and favorable PP microcellular foams were accomplished. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Microcellular foams in polypropylene containing rubber particles were produced in an injection molding process. The foams are generated because of the thermodynamic instability and are controlled by formation process. The effect of processing parameters on microcellular foaming was investigated in the injection molding process. Injection speed and pressure are less important factors but packing pressure plays an important role in controlling the foam density. A critical packing pressure, about 5 × 106 Pa, was found to generate microcellular foams in our polypropylene material system. Rubber particles inside the polypropylene seem to stabilize the microcellular foams.  相似文献   

19.
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
Effect of glass transition temperature and saturation temperature on the solid‐state microcellular foaming of cyclic olefin copolymer (COC)—including CO2 solubility, diffusivity, cell nucleation, and foam morphology—were investigated in this article. COCs of low Tg (78°C) and high Tg (158°C) were studied. Solubilities are 20–50% higher in high Tg COC than in the low Tg COC across the saturation temperature range. Diffusivities are about 15% higher on average in high Tg COC for temperatures up to 50°C. A much faster increase of diffusivity beyond 50°C is observed in low Tg COC due to it being in the rubbery state. Under similar gas concentration, high Tg COC starts foaming at a higher temperature. And the foam density decreases faster in low Tg COC with foaming temperature. Also, high Tg COC foams show about two orders of magnitude higher cell nucleation density than the low Tg COC foams. The effect of saturation temperature on microcellular foaming can be viewed as the effect of CO2 concentration. Nucleation density increases and cell size decreases exponentially with increasing CO2 concentration. Uniform ultramicrocellular structure with an average cell size of 380 nm was created in high‐Tg COC. A novel hierarchical structure composed of microcells (2.5 μm) and nanocells (cell size 80 nm) on the cell wall was discovered in the very low‐density high‐Tg COC foams. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42226.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号