首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. The mechanical properties are mainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.  相似文献   

2.
Recently, stretchable electronics have been highly desirable in the Internet of Things and electronic skins. Herein, an innovative and cost‐efficient strategy is demonstrated to fabricate highly sensitive, stretchable, and conductive strain‐sensing platforms inspired by the geometries of a spiders slit organ and a lobsters shell. The electrically conductive composites are fabricated via embedding the 3D percolation networks of fragmentized graphene sponges (FGS) in poly(styrene‐block‐butadiene‐block‐styrene) (SBS) matrix, followed by an iterative process of silver precursor absorption and reduction. The slit‐ and scale‐like structures and hybrid conductive blocks of FGS and Ag nanoparticles (NPs) provide the obtained FGS–Ag‐NP‐embedded composites with superior electrical conductivity of 1521 S cm?1, high break elongation of 680%, a wide sensing range of up to 120% strain, high sensitivity of ≈107 at a strain of 120%, fast response time of ≈20 ms, as well as excellent reliability and stability of 2000 cycles. This huge stretchability and sensitivity is attributed to the combination of high stretchability of SBS and the binary synergistic effects of designed FGS architectures and Ag NPs. Moreover, the FGS/SBS/Ag composites can be employed as wearable sensors to detect the modes of finger motions successfully, and patterned conductive interconnects for flexible arrays of light‐emitting diodes.  相似文献   

3.
Binary mixtures of liquid metal (LM) or low‐melting‐point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio‐inspired robotics, and shape‐programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA‐ and LM‐embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga‐In (EGaIn) and Ga‐In‐Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid‐phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb‐based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement.  相似文献   

4.
Thermoplastic elastomer tri-block copolymer, namely styrene–butadiene–styrene (SBS) composites filled with carbon nanotubes (CNT) are characterized with the main goal of obtaining electro-mechanical composites suitable for large deformation sensor applications. CNT/SBS composites with different filler contents and filler functionalizations are studied by morphological, thermal, mechanical and electrical analyses. It is shown that the different dispersion levels of CNT in the SBS matrix are achieved for pristine or functionalized CNT with strong influence in the electrical properties of the composites. In particular covalently functionalized CNTs show percolation thresholds higher than 8 weight percentage (wt%) whereas pristine CNT show percolation threshold smaller than 1 wt%. On the other hand, CNT functionalization does not alter the conduction mechanism which is related to hopping between the CNT for concentrations higher than the percolation threshold.Pristine single and multiwall CNT within the SBS matrix allow the preparation of composites with electro-mechanical properties appropriate for strain sensors for deformations up to 5% of strain, the gauge factor varying between 2 and 8. Composites close to the percolation threshold show larger values of the gauge factor.  相似文献   

5.
It is remarkably desirable and challenging to design reconfigurable ferromagnetic materials with high electrical conductivity. This has attracted great attention due to promising applications in many fields such as emerging flexible electronics and soft robotics. However, the shape and magnetic polarity of existing ferromagnetic materials with low conductivity are both hard to be reconfigured, and the magnetization of insulative ferrofluids is easily lost once the external magnetic field is removed. A novel reconfigurable ferromagnetic liquid metal (LM) putty-like material (FM-LMP) with high electrical conductivity and transformed shape, which is prepared through homogenously mixing neodymium–iron–boron microparticles into the gallium-based LM matrix, and turning this liquid-like suspension into the solid-like putty-like material by magnetization, is reported to achieve this. The induction magnetic field of FM-LMP is mainly attributed to the magnetic alignment of the dispersed ferromagnetic microparticles, which can be conveniently demagnetized by mechanical disordering and reversibly reconfigured through microparticle realignment by applying a weak magnetic field. FM-LMP with a low fraction of microparticles can be used as printable conductive ink for paper electronics, which are further exploited for applications including magnetic switching, flexible erasable magnetic recording paper, and self-sensing paper-based soft robotics using magnetic actuation.  相似文献   

6.
A coupled electro-mechanical model was developed to predict the mechanical behavior of woven SiC/SiC ceramic matrix composites and electrical resistance response to mechanical damages in the composites. The matrix is explicitly included in the model such that the matrix cracking and fiber break can be linked to the electrical resistance change during loading. The results show that the electrical resistance increases linearly with an increase of matrix crack density and the number of fiber breaks. The predictions are compared to the experimental results on 2D woven SiC/SiC ceramic composites. With proper materials parameters input, the models can accurately predict the stress–strain curve and electrical resistance change during the loading. The model is further compared to an analytical solution of electromechanical coupling to get an insight into the electrical–mechanical interaction mechanisms in the composites.  相似文献   

7.
Direct current (DC) electrical resistance measurement is effective for studying the interfaces in fibrous composite materials, particularly carbon fiber composites, which are electrically conducting. The measurement yields information on the fiber–matrix interface, residual stress, and interlaminar interface, and can be made in real time during debonding, residual stress reduction, temperature change, and interlaminar shear. This paper reviews the methods and applications in relation to polymer–matrix and cement–matrix composites.  相似文献   

8.
LM13 aluminium alloy (Al−Si12CulMg1) with titanium diboride (TiB2) and boron carbide (B4C) particulate hybrid composites have been prepared using stir casting process. Wt% of titanium diboride is varied from 0–10 and constant 5 wt% boron carbide particles have been used to reinforce LM13 aluminium alloy. Microstructure of the composites has been investigated and mechanical properties viz., hardness, the tensile strength of composites have been analyzed. Wear behavior of samples has been tested using a pin on disc apparatus under varying load (20 N–50 N) for a sliding distance of 2000 m. Fracture and wear on the surface of samples have been investigated. Microstructures of composites show uniform dispersion of particles in LM13 aluminium alloy. Hardness and tensile strength of composites increased with increasing wt % of reinforcements. Dry sliding wear test results reveal that weight loss of composites increased with increasing load and sliding distance. Fracture on the surface of composites reveals that the initiation of crack is at the interface of the matrix and reinforcement whereas dimples are observed for LM13 aluminium alloy. Worn surface of composites shows fine grooves and delamination is observed for the matrix.  相似文献   

9.
It is known that shear-flow can induce units to assemble into vorticity-aligned stripe-structures in confined geometries. This study shows that the microstructure and the property of the stripe in polymer thin film can be well tuned by adjusting the viscosity ratio between dispersed phase and continuous phase. Polypropylene (PP)/poly(styrene–ethylene/butadiene–styrene) (SEBS)/octadecylamine functionalized multiwalled carbon nanotubes (ODA-MWCNTs) composites with different viscosity ratios were prepared by either pre-compounding ODA-MWCNT into PP or SEBS in a microcompounder. Under the induction of shear-flow, ODA-MWCNT and SEBS spontaneously assembled into vorticity-aligned stripes in PP thin films for all the composites with different viscosity ratios, resulting in the property of conductive anisotropy for the film. Interestingly, it was found that both the microstructures and the electrical properties of MWCNT stripes in PP thin films prepared from the composites with different viscosity ratios were significantly different.  相似文献   

10.
《Composites Part A》1999,30(9):1081-1091
Vapor grown carbon fibers (VGCF, Pyrograf III™ from Applied Sciences, Inc.), with 100–300 nm diameters and ∽10–100 μm lengths, were formulated in various fiber volume fractions into epoxy (thermoset) and into poly(phenylene sulfide) (thermoplastic) composites. Increases in stiffness were observed as with previous VGCF/organic matrix composites. Large increases in flexural strengths were achieved in both systems demonstrating for the first time that discontinuous randomly oriented Pyrograf III™ can give strength increases and has substantial potential as a reinforcement in composites. Here-to-fore, addition of VGCF caused strength decreases. Voids, residual thermal strains (as the fiber surface area is ∽35 times greater than 7 μm-diameter PAN fiber), or uncertainties about fiber strength, fiber–matrix bonding and the degree of fiber dispersion, could cause losses of strength. Thermal conductivity properties of VGCF/ABS (acrylonitrile–butadiene–styrene from GE Plastics) and VGCF/epoxy composites with various fiber volume fractions were measured. Thermal conductivity increased with an increase in fiber volume fraction. However, these increases were not significant enough to make these VGCF fiber/organic matrix composites candidates for thermally conductive materials.  相似文献   

11.
Novel all-organic polymer high-dielectric permittivity composites of polyaniline (PANI)/poly (vinylidene fluoride) (PVDF) were prepared by solution method and their dielectric and electric properties were studied over the wide ranges of temperatures and frequencies. To improve the interface bonding between two polymers, dodecylbenzenesulfonic acid (DBSA), a bulky molecule containing a polar head and a long non-polar chain was used both as a surfactant and as dopant in polyaniline (PANI) synthesis. Synthesized conducting PANI–DBSA particles were dispersed in poly(vinylidene fluoride) (PVDF) matrix to form an all-organic composite with different PANI–DBSA concentrations. Near the percolation threshold, the dielectric permittivity of the composites at 100 Hz frequency and room temperature was as high as 170, while the dielectric loss tangent value was as low as 0.9. Like typical percolation system, composites experienced high dielectric permittivity at low filler concentrations. However, their dielectric loss tangent was low enough to match with non-percolative ceramic filler-based polymer composites. Maximum electrical conductivity at 24 wt% of PANI–DBSA was mere 10?6 S/cm, a remarkably low value for percolative-type composites. Increase in the dielectric permittivity of the composites with increase in temperature from 25 to 115 °C for different PANI–DBSA concentrations was always in the same range of 50–60 %. However, the degree of increase in the electrical conductivity with the temperature was more prominent at low filler concentrations compared with high filler concentrations. Distinct electrical and their unique thermal dependence were attributed to an improved interface between the filler and the polymer matrix.  相似文献   

12.
Polymer composites with electrically conductive fillers have been developed as mechanically flexible, easily processable electromagnetic interference (EMI) shielding materials. Although there are a few elastomeric composites with nanostructured silvers and carbon nanotubes showing moderate stretchability, their EMI shielding effectiveness (SE) deteriorates consistently with stretching. Here, a highly stretchable polymer composite embedded with a three-dimensional (3D) liquid-metal (LM) network exhibiting substantial increases of EMI SE when stretched is reported, which matches the EMI SE of metallic plates over an exceptionally broad frequency range of 2.65–40 GHz. The electrical conductivities achieved in the 3D LM composite are among the state-of-the-art in stretchable conductors under large mechanical deformations. With skin-like elastic compliance and toughness, the material provides a route to meet the demands for emerging soft and human-friendly electronics.  相似文献   

13.
This article reviews recent literature on hierarchical thermoplastic-based composites that simultaneously incorporate carbon nanotubes (CNTs) and conventional microscale fibers, and discusses the structure–property relationships of the resulting hybrids. The mixing of multiple and multiscale constituents enables the preparation of materials with new or improved properties due to synergistic effects. By exploiting the outstanding mechanical, thermal and electrical properties of CNTs, a new generation of multifunctional high-performance composites suitable for a wide variety of applications can be developed.  相似文献   

14.
This study investigates in detail the effects of processing parameters (pressure and temperature) on the internal structure and interfacial compatibility of unidirectional (UD) sheets of ultrahigh molecular weight polyethylene (UHMWPE) fiber/styrene–ethylene–butylene–styrene (SEBS) resin composites by dynamic mechanical thermal analysis (DMTA) and T-peel tests. The variation of storage moduli of the composites with the processing pressure indicate that almost all of the resin phase had changed into the interfacial phase; the tan δ curves also testified that the ethylene–butylene (EB) segment of SEBS matrix was entangled with the molecular chains of polyethylene (PE) fibers. Moreover, the result of the T-peel tests of composites indicated that the pressure produces more significant changes than the temperature for both monofilm and no-film UD composites. Besides, the latter had higher adhesion strengths under the same processing conditions due to increased adhesion between the fiber and the resin. Next, high-density polyethylene (HDPE) modified SEBS resin was used as the matrix of the composites. Their interfacial adhesion strengths were found to increase slightly and the DMTA curves indicate that the crystallinity of the modified matrix increased with the content of HDPE resin. All of these benefit the improvement of the protection property of the composites.  相似文献   

15.
《Composites Part A》2007,38(3):730-738
Polymer layered silicate nanocomposites can improve the flexural and compressive strength of continuous fibre reinforced composites by means of increasing the matrix modulus. A three-phase thermoplastic composite consisting of a main reinforcing phase of woven glass fibres and a polyamide 6 (PA6) nanocomposite matrix was fabricated. Flexural testing of a conventional PA6 fibre composite has shown a decrease of the flexural strength upon increasing temperature. This behaviour is associated with the decrease of the matrix modulus, especially above Tg. The nanocomposite used in this study has a modulus that is much higher than unfilled PA6, even above Tg and after moisture conditioning. The results showed that the fibre composites with a nanocomposite matrix have a more than 40% increased flexural and compressive strength at elevated temperatures. This also means that the temperature at which the materials can be used is increased by 40–50 °C. Therefore, by using a nanocomposite matrix the high temperature performance of fibre composites can be improved without any change in processing conditions. The combination with other advantages of nanocomposites in areas such as barrier properties, flammability and creep makes this a very attractive approach.  相似文献   

16.
Damping is an important parameter for vibration control, noise reduction, fatigue endurance or impact resistance of composite materials. In this study, a micromechanical model was used to predict the damping of a composite material containing shear thickening fluids (STFs) at the fibre–matrix interfaces. Predictions of the model and dynamical mechanical analysis results are in concert. The damping of the composites was improved significantly. The dynamic properties exhibited a strong dependence on both frequency and applied external load amplitude. Damping peaks appeared which coincided with the thickening of the STF at the fibre–matrix interface. The location of the peaks depends on the onset of thickening and post-thickening rheological behaviour of the STF. This work shows that a micromechanics approach can be useful for an appropriate choice of microstructural design and properties of STFs in order to control the stiffness and damping behaviour of composites. STFs can be integrated at the microscale of polymer composites to create new materials with load-controlled adaptive dynamic stiffness-damping properties.  相似文献   

17.
Environmental regulations require the improvement of automobile fuel efficiency. This can be achieved mainly by reducing the weight of automobile components. In this study, polycarbonate/acrylonitrile–butadiene–styrene copolymer (PC/ABS) based composite mixed with glass fibers and metal fibers was developed and its suitability of application into car audio chassis was investigated. The test materials were prepared with various contents of metal fibers because of the fibers’ excellent mechanical and electrical properties. In this study, the morphologies of the materials were investigated to confirm the dispersion of the fillers and the interfacial characteristics between the fillers and the base material. In addition, the mechanical and electrical characteristics of the PC/ABS based composites, which depended on the metal fiber content, were evaluated using key mechanical (impact, tensile and flexural) and electrical tests such as electromagnetic interference (EMI) and surface resistance. The proper proportion of the metal fibers in PC/ABS based composites was determined from the test results. Finally, the applicability of PC/ABS based composites in car audio chassis was evaluated through weight reduction analysis and cost-benefit analysis.  相似文献   

18.
Dense borosilicate glass matrix composites containing up to 3 wt% of multiwalled carbon nanotubes were produced by a sol–gel process. The three different silicate precursors employed (tetramethylsilane (TMOS), methyltriethoxysilane (MTES) and methyltrimethoxysilane (MTMS)) yielded transparent xerogels which were subsequently crushed and densified by hot pressing at 800 °C. The dispersion of the carbon nanotubes was aided by using an organic–inorganic binder (3-aminopropyl triethoxysilane) which limited flocculation of the CNTs in the silica sol. After densification, the borosilicate glass composites containing up to 2 wt% CNTs showed significant improvements in hardness and compression strength, as well as thermal conductivity, whilst percolation effects lead to a dramatic increase in electrical conductivity above 1 wt%. This simple approach to disperse CNTs into a technical silicate glass matrix via the sol–gel process focusses specifically on the borosilicate system, but the procedure can be applied to produce other inorganic matrix composites containing CNTs.  相似文献   

19.
Fabricating carbon nanotube-based composites requires high degree of dispersion of carbon nanotubes into a polymer matrix. The widely used approaches reported in open literature for such a purpose are usually complicated and high-cost. Herein, we found that Chinese ink could be used to prepare composites composed of multi-walled carbon nanotubes (MWCNTs) and polyvinyl alcohol (PVA). The Chinese ink acted as a solvent and a dispersant. The MWCNT-ink-PVA ternary composite possessed both high flexibility and high electrical conductivity, with an optimized electrical conductivity of 8.17 S cm−1. This simple method is believed to be applicable to other nanosacle carbon materials.  相似文献   

20.
铜基石墨复合材料的研究进展   总被引:1,自引:0,他引:1  
铜基石墨复合材料是一种广泛应用于摩擦材料和电接触材料等领域的金属基复合材料.综述了铜基石墨复合材料在改善铜基体与石墨增强体结合方面的研究进展,主要包括基体合金化、石墨的表面处理、添加粘结剂等,重点介绍了铜基石墨复合材料的制备工艺方法,并概述了其导电导热性能、摩擦磨损性能、工艺性能及应用,最后展望了铜基石墨复合材料的研究重点和发展方向,认为取代现有的易切削铅黄铜合金将成为铜基石墨复合材料今后研究和应用的一个亮点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号