首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The widespread occurrence of Pro residues adjacent to Cys ligandsin the sequences of [4Fe-4S] electron transfer proteins hasnot yet found a functional basis. The two such Pro of Clostridiumpasteurianum 2[4Fe-4S] ferredoxin have been probed by site-directedmutagenesis. Any one of them, but not both simultaneously, canbe substituted without impairing the proper folding of the protein.The reduction potentials of the ferredoxin variants fall ina narrow range of <20 mV above the potential of the nativeprotein. The biological activities with C.pasteurianum hydrogenaseand pyruvate-ferredoxin oxidoreductase do not change significantly,except when Lys replaces Pro. In these cases, the data suggestthat the two clusters of 2[4Fe-4S] ferredoxin may not alwaysbe equivalent in the interaction with the redox partners. Destabilizationof the structure has been observed as the consequence of theProl9 or Pro48 substitutions. Using 2-D NMR, this effect hasbeen associated with perturbations of both the hydrogen bondnetwork and one amino acid side chain around the [4Fe-4S] clusters.Thus, the conserved Pro found in the binding motif of [4Fe-4S]clusters in proteins strongly stabilizes the active site butdoes not play an essential role in the mechanism of electrontransfer.  相似文献   

3.
The fluorescent modification of proteins (with genetically encoded low-molecular-mass fluorophores, affinity probes, or other chemically active species) is extraordinarily useful for monitoring and controlling protein functions in vitro, as well as in cell cultures and tissues. The large sizes of some fluorescent tags, such as fluorescent proteins, often perturb normal activity and localization of the protein of interest, as well as other effects. Of the many fluorescent-labeling strategies applied to in vitro and in vivo studies, one is very promising. This requires a very short (6- to 12-residue), appropriately spaced, tetracysteine sequence (-CCXXCC-); this is either placed at a protein terminus, within flexible loops, or incorporated into secondary structure elements. Proteins that contain the tetracysteine motif become highly fluorescent upon labeling with a nonluminescent biarsenical probe, and form very stable covalent complexes. We focus on the development, growth, and multiple applications of this protein research methodology, both in vitro and in vivo. Its application is not limited to intact-cell protein visualization; it has tremendous potential in other protein research disciplines, such as protein purification and activity control, electron microscopy imaging of cells or tissue, protein-protein interaction studies, protein stability, and aggregation studies.  相似文献   

4.
The entire polypeptide chains for two new Clostridium pasteurianum ferredoxin (Fd) mutants were prepared with the following site-specific substitutions: Cys11Asp and Cys11 alpha-aminobutyric acid (Cys11 alpha- Aba), the latter being a non-naturally occurring amino acid. Standard t- Boc procedures were used for the synthesis and the peptides. The two apoproteins were reconstituted to the 2[4Fe-4S] holoprotein and their spectroscopic, redox and thermal properties were compared with those of native C.pasteurianum Fds. The fully reconstituted Cys11Asp and Cys11 alpha-Aba mutants were initially found to have both clusters intact, i.e. they were 2[4Fe-4S] ferredoxins. The unconventional ligands of Asp and alpha-Aba led to holo-Fds that were not very stable and easily released an iron to form the [3Fe-4S] cluster, presumably through oxidation. The Cys11 alpha-Aba mutant was somewhat more thermally stable than Cys11Asp. In contrast, while both mutants were less stable than the native protein upon exposure to oxygen, the Cys11 alpha-Aba mutant was less stable than Cys11Asp. The Cys11Gly mutant was also prepared, but all attempts, despite repeated and varied experimental conditions, at reconstitution to the Cys11Gly holo 2[4Fe-4S] Fd were unsuccessful, probably because a Gly-Gly sequence is known to break structure. This work, when compared with molecular biological site- specific mutagenesis, shows some of the advantages of chemical/in vitro reconstitution: certain mutants which cannot be detected as holoproteins by site-specific mutagenesis can be formed after all in vitro. Nonetheless, it seems apparent that altering any of the Cys coordination sites of the Fd clusters results in fundamentally more unstable ferredoxins.   相似文献   

5.
Current treatments of Alzheimer's disease include the allosteric potentiation of nicotinic acetylcholine receptor (nAChR) response. The location of the binding site for allosteric potentiating ligands (APLs) within the receptor is not yet fully understood. Based on homology models for the ligand binding domain of human α7, human α4β2, and chicken α7 receptors, as well as blind docking experiments with galanthamine, physostigmine, codeine, and 5HT, we identified T197 as an essential element of the APL binding site at the outer surface of the ligand binding domain (LBD) of nAChR. We also found the previously known galanthamine binding site in the region of K123 at the inside of the receptor funnel, which, however, was shown to not be part of the APL site. Our results are verified by site‐directed mutagenesis and electrophysiological experiments, and suggest that APL and ACh bind to different sites on nicotinic receptors and that allosteric potentiation may arise from a direct interplay between both these sites.  相似文献   

6.
Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of Plasmodium falciparum (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of E. coli DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using E. coli dnaK756 cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in E. coli dnaK756 cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.  相似文献   

7.
The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analogues, the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between the ligand, C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site, per se, to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we showed that increasing charge along the rim of the binding cleft of the protein kinase C δ C1 b domain raises the requirement for anionic phospholipids. Correspondingly, it shifts the selectivity of C1 domain translocation to the plasma membrane, which is more negatively charged than internal membranes. This change in localization is most pronounced in the case of more hydrophilic ligands, which provide weaker membrane stabilization than do the more hydrophobic ligands and thus contributes an element to the structure–activity relations for C1 domain ligands. Coexpressing pairs of C1‐containing constructs with differing charges each expressing a distinct fluorescent tag provided a powerful tool to demonstrate the effect of increasing charge in the C1 domain.  相似文献   

8.
Photosynthetic organisms like plants, algae, and cyanobacteria use light for the regeneration of dihydronicotinamide dinucleotide phosphate (NADPH). The process starts with the light-driven oxidation of water by photosystem II (PSII) and the released electrons are transferred via the cytochrome b6f complex towards photosystem I (PSI). This membrane protein complex is responsible for the light-driven reduction of the soluble electron mediator ferredoxin (Fd), which passes the electrons to ferredoxin NADP+ reductase (FNR). Finally, NADPH is regenerated by FNR at the end of the electron transfer chain. In this study, we established a clickable fusion system for in vitro NADPH regeneration with PSI−Fd and PSI−Fd−FNR, respectively. For this, we fused immunity protein 7 (Im7) to the C-terminus of the PSI−PsaE subunit in the cyanobacterium Synechocystis sp. PCC 6803. Furthermore, colicin DNase E7 (E7) fusion chimeras of Fd and FNR with varying linker domains were expressed in Escherichia coli. Isolated Im7−PSI was coupled with the E7−Fd or E7−Fd−FNR fusion proteins through high-affinity binding of the E7/Im7 protein pair. The corresponding complexes were tested for NADPH regeneration capacity in comparison to the free protein systems demonstrating the general applicability of the strategy.  相似文献   

9.
The active site of [FeFe]-hydrogenases contains a cubane [4Fe-4S]-cluster and a unique diiron cluster with biologically unusual CO and CN ligands. The biogenesis of this diiron site, termed [2FeH], requires the maturation proteins HydE, HydF and HydG. During the maturation process HydF serves as a scaffold protein for the final assembly steps and the subsequent transfer of the [2FeH] precursor, termed [2FeP], to the [FeFe]-hydrogenase. The binding site of [2FeP] in HydF has not been elucidated, however, the [4Fe-4S]-cluster of HydF was considered as a possible binding partner of [2FeP]. By targeting individual amino acids in HydF from Thermosipho melanesiensis using site directed mutagenesis, we examined the postulated binding mechanism as well as the importance and putative involvement of the [4Fe-4S]-cluster for binding and transferring [2FeP]. Surprisingly, our results suggest that binding or transfer of [2FeP] does not involve the proposed binding mechanism or the presence of a [4Fe-4S]-cluster at all.  相似文献   

10.
11.
A FlAsH of potential: the specific binding of the biarsenical probe to the tetracysteine motif has matured as a tool for cell biology studies. Combining two such binders in one probe generates a useful reporter of protein dimerization events. The current state of art and the perspective for future developments are highlighted.  相似文献   

12.
We have investigated the use of FlAsH, a small fluorogenic molecule that binds to tetracysteine motifs, to probe folding of the 15-HEAT repeat protein PR65A. PR65A is one of a special class of modular non-globular proteins known as tandem repeat proteins, which are composed of small structural motifs that stack to form elongated, one-dimensional architectures. We were able to introduce linear and bipartite tetracysteine motifs at several sites along the α-helical HEAT array of PR65A without disrupting the structure or stability. When the linear tetracysteine motif CCPGCC was used, FlAsH fluorescence reported globally on the folding of the protein. When the tetracysteine motif was displayed in bipartite mode through the engineering of pairs of cysteines on adjacent HEAT repeats, FlAsH fluorescence became a reporter of local conformation and of oligomerisation. Thus, by designing FlAsH-binding sites at different locations along the repeat array one can interrogate specific properties of PR65A, paving the way for structure-function analysis of this protein both in vitro and in the cell.  相似文献   

13.
The kainate receptors are the least studied subfamily of ionotropic glutamate receptors. These receptors are thought to have a neuromodulatory role and have been associated with a variety of disorders in the central nervous system. This makes kainate receptors interesting potential drug targets. Today, structures of the ligand binding domain (LBD) of the kainate receptor GluK3 are only known in complex with the endogenous agonist glutamate, the natural product kainate, and two synthetic agonists. Herein we report structures of GluK3 LBD in complex with two 2,4‐syn‐functionalized (S)‐glutamate analogues to investigate their structural potential as chemical scaffolds. Similar binding affinities at GluK3 were determined for the 2‐(methylcarbamoyl)ethyl analogue (Ki=4.0 μM ) and the 2‐(methoxycarbonyl)ethyl analogue (Ki=1.7 μM ), in agreement with the similar positioning of the compounds within the binding pocket. As the binding affinity is similar to that of glutamate, this type of Cγ substituent could be used as a scaffold for introduction of even larger substituents reaching into unexplored binding site regions to achieve subtype selectivity.  相似文献   

14.
The ceramide transport protein (CERT) delivers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, where ceramide is converted to sphingomyelin (SM). The function of CERT is regulated in two distinct phosphorylation-dependent events: multiple phosphorylations in a serine-repeat motif (SRM) and phosphorylation of serine 315 residue (S315). Pharmacological inhibition of SM biosynthesis results in an increase in SRM-dephosphorylated CERT, which serves as an activated form, and an enhanced phosphorylation of S315, which augments the binding of CERT to ER-resident VAMP-associated protein (VAP), inducing the full activation of CERT to operate at the ER–Golgi membrane contact sites (MCSs). However, it remains unclear whether the two phosphorylation-dependent regulatory events always occur coordinately. Here, we describe that hyperosmotic stress induces S315 phosphorylation without affecting the SRM-phosphorylation state. Under hyperosmotic conditions, the binding of CERT with VAP-A is enhanced in an S315 phosphorylation-dependent manner, and this increased binding occurs throughout the ER rather than restrictedly at the ER–Golgi MCSs. Moreover, we found that de novo synthesis of SM with very-long acyl chains preferentially increases via a CERT-independent mechanism under hyperosmotic-stressed cells, providing an insight into a CERT-independent ceramide transport pathway for de novo synthesis of SM.  相似文献   

15.
Stearoyl-acyl carrier protein Delta(9) desaturase (Delta9D) produces oleic acid, a nutritionally valuable fatty acid containing a cis double bond between C-9 and C-10. This multiprotein diiron enzyme complex reacts with stearoyl-acyl carrier protein, reduced [2Fe-2S] ferredoxin, and O(2) to complete the highly regiospecific and stereoselective desaturation reaction. Interactions with the acyl chain provide stability to the enzyme-substrate complex, give an energetic contribution to catalytic selectivity, and help to order the electron transfer, O(2) binding, and C-H bond cleavage steps of catalysis. Reactions with natural acyl chains indicate the involvement of a highly reactive diiron intermediate capable of oxidizing secondary C-H bonds (bond dissociation energy approximately 95 kcal/mol), but also capable of diagnostic O-atom transfer reactions with the appropriate substrate analogues. For soluble Delta9D, the natural reaction may initiate at the C-10 position, in contrast to the well-established initial reactivity of the membrane enzyme homologue stearoyl-coenzyme A (CoA) Delta(9) desaturase at the C-9 position.  相似文献   

16.
Selective nuclear receptor modulators (SNRMs), which are used clinically for the treatment of NR-related diseases, display mixed agonistic/antagonistic activity in a tissue-selective manner depending on the cellular concentrations of coregulator proteins, that is, coactivators and corepressors. The molecular details of the SNRM function provided us with an idea for a rational method for the high-throughput screening of SNRMs in real time in intact living cells. We have developed genetically encoded fluorescent indicators based on the principle of ligand-induced coactivator and/or corepressor recruitment to NR ligand binding domain in single living cells. We demonstrated that an SNRM induces a distinct conformational change in the NR LBD, which is different from that induced by a full agonist or antagonist, but favorable for the recruitment of a coactivator or corepressor protein to the NR. The molecular details of an SNRM binding to a NR, and the subsequently induced conformational changes and recruitment of coregulator protein(s) are important features for the understanding of SNRM action in the living body. Our fluorescent indicators are capable of distinguishing among agonists, antagonists, and SNRMs, and can therefore serve as versatile molecular sensors that predict the pharmacological character of ligands, which is important for an accurate cure of a disease.  相似文献   

17.
Iron-sulfur (Fe-S) proteins are crucial for many cellular functions, particularly those involving electron transfer and metabolic reactions. An essential monothiol glutaredoxin GRXS15 plays a key role in the maturation of plant mitochondrial Fe-S proteins. However, its specific molecular function is not clear, and may be different from that of the better characterized yeast and human orthologs, based on known properties. Hence, we report here a detailed characterization of the interactions between Arabidopsis thaliana GRXS15 and ISCA proteins using both in vivo and in vitro approaches. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that GRXS15 interacts with each of the three plant mitochondrial ISCA1a/1b/2 proteins. UV-visible absorption/CD and resonance Raman spectroscopy demonstrated that coexpression of ISCA1a and ISCA2 resulted in samples with one [2Fe-2S]2+ cluster per ISCA1a/2 heterodimer, but cluster reconstitution using as-purified [2Fe-2S]-ISCA1a/2 resulted in a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer. Cluster transfer reactions monitored by UV-visible absorption and CD spectroscopy demonstrated that [2Fe-2S]-GRXS15 mediates [2Fe-2S]2+ cluster assembly on mitochondrial ferredoxin and [4Fe-4S]2+ cluster assembly on the ISCA1a/2 heterodimer in the presence of excess glutathione. This suggests that ISCA1a/2 is an assembler of [4Fe-4S]2+ clusters, via two-electron reductive coupling of two [2Fe-2S]2+ clusters. Overall, the results provide new insights into the roles of GRXS15 and ISCA1a/2 in effecting [2Fe-2S]2+ to [4Fe-4S]2+ cluster conversions for the maturation of client [4Fe-4S] cluster-containing proteins in plants.  相似文献   

18.
19.
The function of cellobiose dehydrogenase (CDH) in biosensors, biofuel cells, and as a physiological redox partner of lytic polysaccharide monooxygenase (LPMO) is based on its role as an electron donor. Before donating electrons to LPMO or electrodes, an interdomain electron transfer from the catalytic FAD-containing dehydrogenase domain to the electron shuttling cytochrome domain of CDH is required. This study investigates the role of two crucial amino acids located at the dehydrogenase domain on domain interaction and interdomain electron transfer by structure-based engineering. The electron transfer kinetics of wild-type Myriococcum thermophilum CDH and its variants M309A, R698S, and M309A/R698S were analyzed by stopped-flow spectrophotometry and structural effects were studied by small-angle X-ray scattering. The data show that R698 is essential to pull the cytochrome domain close to the dehydrogenase domain and orient the heme propionate group towards the FAD, while M309 is an integral part of the electron transfer pathway – its mutation reducing the interdomain electron transfer 10-fold. Structural models and molecular dynamics simulations pinpoint the action of these two residues on the domain interaction and interdomain electron transfer.  相似文献   

20.
Investigations into metabolic processes within the cell have often relied on genetic methods such as forced expression and knockout or knockdown techniques. An alternative approach would be introducing a molecule into the desired location inside the cell. To translocate compounds from outside cells into the endoplasmic reticulum (ER), we constructed a delivery carrier protein. This comprised N‐terminal galectin‐1 for cell‐surface binding (G1), a protease cleavable sequence (ps), a HaloTag domain for attaching exogenous compounds (Halo), and a C‐terminal KDEL sequence for ER retention. Fluorescently labeled G1‐ps‐Halo‐KDEL passed through the Golgi apparatus and reached the ER. By using Man9GlcNAc2‐BODIPY as a cargo compound, the carrier protein was also delivered into the ER with concomitant processing of mannose to Man5,6, by the ER‐resident α1,2‐mannosidase. G1‐ps‐Halo‐KDEL might serve as a new type of delivery carrier protein to direct compounds into the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号