首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The representative sample La0.58Dy0.09Ca0.33MnO3 of Dy doped La0.67Ca0.33MnO3 rare-earth manganites was investigated.The most important effect of Dy doping is to introducethe magnetoimpurity and form the spin clusters which induce dramatically large CMR in Lao.58Dyo.09Cao.33MnO3. The fitting results of field-induced resistivity decrease to the Brillouin function indicate that the CMR is caused by the spin dependent hopping between spin clusters. It is the magnetic field that reduces the size of spin clusters and induces a field-induced irreversible CMR behaviour.  相似文献   

2.
3.
Composed of electrocaloric (EC) ceramics and polymers, polymer composites with high EC performances are considered as promising candidates for next-generation all-solid-state cooling devices. Their mass application is limited by the low EC strength, which requires very high operational voltage to induce appreciable temperature change. Here, an all-scale hierarchical architecture is proposed and demonstrated to achieve high EC strength in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)-based nanocomposites. On the atomic scale, highly polarizable hierarchical interfaces are induced by incorporating BiFeO3 (BFO) nanoparticles in Ba(Zr0.21Ti0.79)O3 (BZT) nanofibers (BFO@BZT_nfs); on the microscopic scale, percolation of the interfaces further raises the polarization of the composite nanofibers; on the mesoscopic scale, orthotropic orientation of BFO@BZT_nfs leads to much enhanced breakdown strength of the nanocomposites. As a result, an ultrahigh EC strength of ≈0.22 K m MV−1 is obtained at an ultralow electric field of 75 MV m−1 in nanocomposites filled with the orthotropic composite nanofibers, which is by far the highest value achieved in polymer nanocomposites at a moderate electric field. Results of high-angle annular dark-field scanning transmission electron microscopy, in situ scanning Kelvin probe microscopy characterization, and phase-field simulations all indicate that the much enhanced EC performances can be attributed to the all-scale hierarchical structures of the nanocomposite.  相似文献   

4.
Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin–orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2 and via plasma stripping followed thermal annealing of MoS2. However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room-temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low-energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room-temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.  相似文献   

5.
6.
本文综述了磁电阻 (MR)材料的研究进展 ,并对目前研究热点的四类巨磁电阻 (GMR)材料进行了概括评述 ,侧重论述MR材料在信息存储等领域的应用 ,明确指出开发和应用MR材料的关键问题是提高各类GMR材料的室温MR值和降低其工作磁场  相似文献   

7.
过渡金属尖晶石型硫化物具有包括超巨磁电阻(CMR)效应在内的多种物理性能, 其CMR效应机理的研究对开发巨磁电阻材料有重要价值。目前, 铬基硫族尖晶石的CMR效应尚未深入研究。本论文通过固相反应法制备A0.05Co0.95Cr2S4(A=Zn、Ni、Cd、Fe)样品, 研究磁性和非磁性元素掺杂对CoCr2S4晶体结构和磁性能的影响。XRD检测表明, 掺杂的A0.05Co0.95Cr2S4(A=Zn、Ni、Cd、Fe)均呈现纯的尖晶石结构, 掺杂导致的晶胞参数变化与掺杂元素的离子半径成比例。磁电阻测定表明A0.05Co0.95Cr2S4(A=Zn、Ni、Fe)均具有巨磁电阻效应。掺杂削弱了铁磁相互作用, 导致A0.05Co0.95Cr2S4(A=Zn、Ni、Cd、Fe)的居里温度TC降低。在0.01 T下, A0.05Co0.95Cr2S4(A=Zn、Ni、Cd、Fe)的零场冷却(ZFC)和加场冷却(FC)曲线均呈现磁性不可逆现象。A0.05Co0.95Cr2S4(A=Zn、Ni、Cd、Fe)呈现典型的亚铁磁性磁滞回线, 其中Zn0.05Co0.95Cr2S4的矫顽场最大。  相似文献   

8.
Magnetocaloric and colossal magnetoresistance effects of the layered perovskite La1:4Sr1:6Mn2O7 compound have been studied. A broad peak of magnetic entropy change (-ΔSM) is found above the Curie temperature (TC=120 K), which can be associated with the existence of two-dimensional short range ferromagnetic order. Additionally, the curvilinear shape of -ΔSM for layered perovskite is quite different from that of the Ln1-xAxMnO3 probably arising from magnetocrystalline anisotropy. At the same time, a wide peak of colossal magnetoresitance effect near TC is found in the layered provskite La1:4Sr1:6Mn2O7.  相似文献   

9.
The mechanical exfoliation of graphene from graphite provides the cornerstone for the synthesis of other 2D materials with layered bulk structures, such as hexagonal boron nitride, transition metal dichalcogenides, black phosphorus, and so on. However, the experimental production of 2D flat boron is challenging because bulk boron has very complex spatial structures and a rich variety of chemical properties. Therefore, the realization of 2D flat boron marks a milestone for the synthesis of 2D materials without layered bulk structures. The historical efforts in this field, particularly the most recent experimental progress, such as the growth of 2D flat boron on a metal substrate by chemical vapor deposition and molecular beam epitaxy, or liquid exfoliation from bulk boron, are described.  相似文献   

10.
The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However, current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here the magnetic and electronic properties of CrSBr are reported, an air-stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its Néel temperature, TN = 132 ± 1 K, CrSBr adopts an A-type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is ΔE = 1.5 ± 0.2 eV with a corresponding PL peak centered at 1.25 ± 0.07 eV. Using magnetotransport measurements, strong coupling between magnetic order and transport properties in CrSBr is demonstrated, leading to a large negative magnetoresistance response that is unique among vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin-based electronics.  相似文献   

11.
Graphene and other 2D materials, such as molybdenum disulfide, have been increasingly used in electronics, composites, and biomedicine. In particular, MoS2 and graphene hybrids have attracted a great interest for applications in the biomedical research, therefore stimulating a pertinent investigation on their safety in immune cells like macrophages, which commonly engulf these materials. In this study, M1 and M2 macrophage viability and activation are mainly found to be unaffected by few‐layer graphene (FLG) and MoS2 at doses up to 50 µg mL?1. The uptake of both materials is confirmed by transmission electron microscopy, inductively coupled plasma mass spectrometry, and inductively coupled plasma atomic emission spectroscopy. Notably, both 2D materials increase the secretion of inflammatory cytokines in M1 macrophages. At the highest dose, FLG decreases CD206 expression while MoS2 decreases CD80 expression. CathB and CathL gene expressions are dose‐dependently increased by both materials. Despite a minimal impact on the autophagic pathway, FLG is found to increase the expression of Atg5 and autophagic flux, as observed by Western blotting of LC3‐II, in M1 macrophages. Overall, FLG and MoS2 are of little toxicity in human macrophages even though they are found to trigger cell stress and inflammatory responses.  相似文献   

12.
The interface between two-dimensional (2D) materials and soft, stretchable polymeric substrates is a governing criterion in proposed 2D materials-based flexible devices. This interface is dominated by weak van der Waals forces and there is a large mismatch in elastic constants between the contact materials. Under dynamic loading, slippage, and decoupling of the 2D material is observed, which then leads to extensive damage propagation in the 2D lattice. Herein, graphene is functionalized through mild and controlled defect engineering for a fivefold increase in adhesion at the graphene-polymer interface. Adhesion is characterized experimentally using buckling-based metrology, while molecular dynamics simulations reveal the role of individual defects in the context of adhesion. Under in situ cyclic loading, the increased adhesion inhibits damage initiation and interfacial fatigue propagation within graphene. This work offers insight into achieving dynamically reliable and robust 2D material-polymer contacts, which can facilitate the development of 2D materials-based flexible devices.  相似文献   

13.
Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene‐based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals.  相似文献   

14.
Peritumoral brain invasion is the main target to cure glioblastoma. Chemoradiotherapy and targeted therapies fail to combat peritumoral relapse. Brain inaccessibility and tumor heterogeneity explain this failure, combined with overlooking the peritumor microenvironment. Reduce graphene oxide (rGO) provides a unique opportunity to modulate the local brain microenvironment. Multimodal graphene impacts are reported on glioblastoma cells in vitro but fail when translated in vivo because of low diffusion. This issue is solved by developing a new rGO formulation involving ultramixing during the functionalization with polyethyleneimine (PEI) leading to the formation of highly water-stable rGO-PEI. Wide mice brain diffusion and biocompatibility are demonstrated. Using an invasive GL261 model, an anti-invasive effect is observed. A major unexpected modification of the peritumoral area is also observed with the neutralization of gliosis. In vitro, mechanistic investigations are performed using primary astrocytes and cytokine array. The result suggests that direct contact of rGO-PEIUT neutralizes astrogliosis, decreasing several proinflammatory cytokines that would explain a bystander tumor anti-invasive effect. rGO also significantly downregulates several proinvasive/protumoral cytokines at the tumor cell level. The results open the way to a new microenvironment anti-invasive nanotherapy using a new graphene nanomaterial that is optimized for in vivo brain delivery.  相似文献   

15.
How do scientific ideas become market products? There is probably no single pathway for such transformation. And yet, there are certain similarities in the way how advanced materials evolve from laboratory studies to being used in technology. Common steps in such progress are the enhancement of useful properties, development of the production methods, creation of industrially-relevant modification of the material itself and its fabrication process. The reason in the emergent similarities in the pathway to market is the established relation between materials supplier and the final product manufacturers. A dramatic role in such relations is played by industrial standards. The later can help, but also, if incorrectly developed, can stumble the final product development. We will study the process of commercialisation of graphene, its transformation to commodity and the emerging graphene standardisation efforts.  相似文献   

16.
Magnetoresistance, the dependence of resistivity on the applied magnetic field, provides the opportunity to manipulate and utilize the electronic spin degree of freedom, which is not only a long‐term frontier field of solid‐state physics but also the cornerstone of information storage technology. However, the negative magnetoresistance (nMR) is a relatively rare case of magnetoresistance in which the microscopic origin is still elusive and for which it is difficult to define a general interpretation. Herein, an experimental case of an intrinsic unsaturated nMR is demonstrated in van der Waals FeNbTe2 single crystal. The clear‐cut evidence in angle‐resolved photoemission spectroscopy (ARPES), the electronic transport measurement, and DC/AC magnetic susceptibility confirms that the intrinsic unsaturated nMR is derived from the comprehensive effect of Anderson localization and a spin glass state. Taking into consideration that intrinsic unsaturated nMR has so far been rarely reported, especially in van der Waals structures, it is anticipated that this work will not only lead to a deep understanding of the inherent microcosmic mechanism but will also serve as a guide to broaden the research of spintronics and information storage based on magnetoresistance.  相似文献   

17.
Graphene is a truly two‐dimensional atomic crystal with exceptional electronic and mechanical properties. Whereas conventional bulk and thin‐film materials have been studied extensively, the key mechanical properties of graphene, such as tearing and cracking, remain unknown, partly due to its two‐dimensional nature and ultimate single‐atom‐layer thickness, which result in the breakdown of conventional material models. By combining first‐principles ReaxFF molecular dynamics and experimental studies, a bottom‐up investigation of the tearing of graphene sheets from adhesive substrates is reported, including the discovery of the formation of tapered graphene nanoribbons. Through a careful analysis of the underlying molecular rupture mechanisms, it is shown that the resulting nanoribbon geometry is controlled by both the graphene–substrate adhesion energy and by the number of torn graphene layers. By considering graphene as a model material for a broader class of two‐dimensional atomic crystals, these results provide fundamental insights into the tearing and cracking mechanisms of highly confined nanomaterials.  相似文献   

18.
2D materials exhibit superior properties in electronic and optoelectronic fields. The wide demand for high-performance optoelectronic devices promotes the exploration of diversified 2D materials. Recently, 2D covalent organic frameworks (COFs) have emerged as next-generation layered materials with predesigned π-electronic skeletons and highly ordered topological structures, which are promising for tailoring their optoelectronic properties. However, COFs are usually produced as solid powders due to anisotropic growth, making them unreliable to integrate into devices. Here, by selecting tetraphenylethylene monomers with photoelectric activity, elaborately designed photosensitive 2D-COFs with highly ordered donor-acceptor topologies are in situ synthesized on graphene, ultimately forming COF-graphene heterostructures. Ultrasensitive photodetectors are successfully fabricated with the COFETBC–TAPT-graphene heterostructure and exhibited an excellent overall performance with a photoresponsivity of ≈3.2 × 107 A W−1 at 473 nm and a time response of ≈1.14 ms. Moreover, due to the high surface area and the polarity selectivity of COFs, the photosensing properties of the photodetectors can be reversibly regulated by specific target molecules. The research provides new strategies for building advanced functional devices with programmable material structures and diversified regulation methods, paving the way for a generation of high-performance applications in optoelectronics and many other fields.  相似文献   

19.
In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize.  It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale.  相似文献   

20.
Graphite's lubricating properties due to the “weak” interactions between individual layers have long been known. However, these interactions are not weak enough to allow graphite to readily exfoliate into graphene on a large scale. Separating graphite layers down to a single sheet is an intense area of research as scientists attempt to utilize graphene's superlative properties. The exfoliation and processing of layered materials is governed by the friction between layers. Friction on the macroscale can be intuitively understood, but there is little understanding of the mechanisms involved in nanolayered materials. Using molecular dynamics and a new forcefield, graphene's unusual behavior in a superlubric state is examined, and the energy dissipated between two such surfaces sliding past each other is shown. The dependence of friction on temperature and surface roughness is described, and agreement with experiment is reported. The accuracy of the simulated behavior enables the processes that drive exfoliation of graphite into individual graphene sheets to be described. Taking into account the friction between layers, a peeling mechanism of exfoliation is predicted to be of lower energy cost than shearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号