首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blends of polyamide 12 (PA12) with styrene/ethylene–butylene/styrene (SEBS) and maleic anhydride grafted SEBS (SEBS‐g‐MA) were prepared by twin‐screw extrusion and injection molding. The morphology, mechanical properties, and dynamic mechanical properties of the blends were studied. The morphology of the blends was evaluated from the etched surfaces of cryogenically fractured specimens with scanning electron microscopy. The morphological parameters showed that the PA12/SEBS‐g‐MA blends (PM series) exhibited a finer and more uniform rubber dispersion than the PA12/SEBS blends (PS series) because of the interfacial chemical reactions. SEBS functionalization via maleic anhydride grafting strongly affected the morphological parameters, such as the domain size, interfacial area per unit of volume, and critical interparticle distance, but the distribution of the rubber domains in the blends was less affected. Tensile and impact studies showed that the PS blends had worse mechanical properties than the PM blends. The tensile strength and elongation at break of the PM blends were considerably greater than those of the PS blends. The fracture toughness and energy values determined for notched Charpy specimens in high‐speed impact tests were markedly higher for the PM blends than for the PS blends. A similar observation was obtained from instrumented falling weight impact studies. Dynamic mechanical analysis confirmed the incompatibility of the blend components because the glass‐transition temperatures of PA12 and the rubber phase (SEBS and SEBS‐g‐MA) were not affected. © 2005 Wiley Periodicals, Inc. J Appl polym Sci 95: 1376–1387, 2005  相似文献   

2.
The morphology development of polypropylene (PP)/polyethylene terephthalate (PET)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and their fibers were studied by means of scanning electron microscopy (SEM) in conjunction with the melt linear viscoelastic measurements. The morphology of the blends was also predicted by using Harkin's spreading coefficient approach. The samples varying in composition with PP as the major phase and PET and SEBS as the minor phases were considered. Although SEM of the binary blends showed matrix‐dispersed type morphology, the ternary blend samples exhibited a morphological feature in which the dispersed phase formed aggregates consisting of both PET and SEBS particles distributed in the PP matrix. The SEM of the blend samples containing 30 and 40 wt % of total dispersed phase showed an agglomerated structure formed between the aggregates. The SEM of the PP/PET binary fiber blends showed long well‐oriented microfibrils of PET whereas in the ternary blends, the microfibrils were found to have lower aspect ratio with a fraction of the SEBS stuck on the microfibril fracture surfaces. These results were attributed to a core‐shell type morphology in which the PET and SEBS formed the core‐shells distributed in the matrix. The melt viscoelastic behavior of the ternary blends containing less than 30 wt % of the total dispersed phase was found to be similar to the matrix and binary blend samples whereas the samples containing 30 and 40 wt % of dispersed phases exhibited a pronounced viscosity upturn and nonterminal storage modulus in low frequency range. These results were found to be in good agreement with the morphological results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
A measure of the effective shear rate range for dispersive mixing in the Haake mixer has been developed, which is more representative of shearing conditions than that currently used. In addition, the effects of processing conditions, composition, and compatibilizer on linear low-density polyethylene and polystyrene (LLDPE/PS) blend morphology were studied. Fiber/stratified morphologies form with blends when the minor phase has low viscosity and is present at its higher concentration. The influence of the viscosity ratio on phase size was found to be a minor effect for mixtures having a low fraction of the dispersed phase (20% PS). The effect of shear intensity, however, was found to be more important at a low composition of the dispersed phase or in compatibilized blends. During Haake blending, an optimal time for adding compatibilizer to stabilize phase morphology was found to be when the final morphology of an incompatible blend had developed. Further studies have concluded that the addition of styrene–ethylene/butylene–styrene (SEBS) stabilized the blend morphology of LLDPE/PS more efficiently than styrene–ethylene/propylene (SEP) on different blending conditions and compositions. At high temperatures, the addition of SEP to a LLDPE/PS blend did not modify the dispersed phase size. On the other hand, SEBS stabilized the dispersion so that the final domain size is independent of composition. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
This work aimed at studying the role of poly(phenylene oxide) (PPO) and polystyrene (PS) in toughening polyamide‐6 (PA6)/styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (SEBS‐g‐MA) blends. The effects of weight ratio and content of PPO/PS on the morphology and mechanical behaviors of PA6/SEBS‐g‐MA/(PPO/PS) blends were studied by scanning electron microscope and mechanical tests. Driving by the interfacial tension and the spreading coefficient, the “core–shell” particles formed by PPO/PS (core) and SEBS‐g‐MA (shell) played the key role in toughening the PA6 blends. As PS improved the distribution of the “core–shell” particles due to its low viscosity, and PPO guaranteed the entanglement density of the PPO/PS phase, the 3/1 weight ratio of PPO/PS supplied the blends optimal mechanical properties. Within certain range, the increased content of PPO/PS could supply more efficient toughening particles and bring better mechanical properties. Thus, by adjusting the weight ratio and content of PPO and PS, the PA6/SEBS‐g‐MA/(PPO/PS) blends with excellent impact strength, high tensile strength, and good heat deflection temperature were obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45281.  相似文献   

5.
Patrícia S. Calvão 《Polymer》2005,46(8):2610-2620
Here, the effect of concentration on the morphology and dynamic behavior of polymethylmethacrylate/polystyrene (PMMA/PS), for PS with two different molecular weight, and polymethylmethacrylate/polypropylene (PMMA/PP) blends was studied. The blends concentrations ranged from 5% to 30% of the dispersed phase (PS or PP). The dynamic data were analyzed to study the possibility of inferring the interfacial tension between the components of the blend from their rheological behavior using Palierne [Palierne JF. Rheol Acta 1990;29:204-14] [1] and Bousmina [Bousmina M. Acta 1999;38:73-83] [2] emulsion models. The relaxation spectrum of the blends was also studied. The dynamic behavior of 85/15 PS/PMMA blend were studied as a function of temperature. It was possible to fit both Palierne and Bousmina's emulsion models to the dynamic data of PMMA/PS blends, to obtain the interfacial tension of the blend. This was not the case for PMMA/PP. The relaxation spectrum of both blends was used to obtain the interfacial tension between the components of the blends. The values of interfacial tension calculated were shown to decrease when the concentration of the blends increased. It was shown using morphological analysis that this phenomenon can be attributed to the coalescence of the dispersed phase during dynamic measurements that occurs for large dispersed phase concentration. When the ‘coalesced’ morphology is taken into account in the calculations the interfacial tension inferred from rheological measurement did not depend on the concentration of the blend used. The values of interfacial tension found analyzing the dynamic behavior of one of the PMMA/PS blend were shown to decrease with temperature.  相似文献   

6.
Syndiotactic polypropylene (sPP) was modified with ethylene–octene copolymer (EOC) and ethylene–propylene rubber (EPR), with test samples prepared in a twin‐screw extruder and then injection‐molded. The phase morphology, rheology, and thermal and tensile properties of the modified sPP were investigated. Atomic force microscopy studies showed how the phase morphology of the sPP blends with elastomers depended on the blend compositions, and the results compared with the storage modulus at low frequency. EOC and EPR were dispersed phase in an sPP matrix with spherical shapes when the dispersed content was 20 wt % or lower. The phase cocontinuity started around 40 wt % EOC for the sPP–EOC blends and around 60 wt % EPR for the sPP–EPR. The dispersed phase then formed more complex elongated shapes. The rheological and thermal properties were affected by the sPP–elastomer interphase. EOC promoted the crystallization of sPP; this increased the crystallization temperature and rate. In contrast, EPR had the opposite effect on the crystallization behavior, and the results indicate that sPP and EPR were not completely separated. The tensile properties were studied from ?20 to 100 °C. We found that the tensile properties at low temperature could be improved without a loss in high‐temperature properties. In the particular case of 20 wt % EOC, both the strain at yield and strain at break of the sPP–EOC blend were improved at both ?20 and 100 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44611.  相似文献   

7.
Polypropylene (PP) was added to a co‐continuous blend of polystyrene (PS) and styrene‐ethylene/butylene‐styrene (SEBS) to investigate the effect of PP on the morphology and rheological behavior of PS/SEBS blends. For this purpose, a reference blend of 50 wt% PS and 50 wt% SEBS was chosen and an isotactic PP was added to it by increments of 10 wt% up to a maximum of 50 wt% of the total weight. Environmental SEM (ESEM) studies on the PS/SEBS/PP blends showed that PP could be added up to 10 wt% without changing the morphology of the co‐continuous PS/SEBS blend, whereas at 20 wt% PP formed a separate discrete phase. The discrete PP phase finally formed a fully developed matrix structure from 40 wt% onwards. Dynamic rheological measurements showed that at low frequencies the storage modulus was largely unaffected by addition of PP in small concentrations (up to 10 wt%), showing a significant effect of the PP/SEBS interface at low deformation rates. Melt strength tests on the PS/SEBS/PP blends showed the existence of a proportional correlation with their corresponding storage moduli, measured at frequencies from 10–100 rad/s. POLYM. ENG. SCI., 45:1432–1444, 2005. © 2005 Society of Plastics Engineers  相似文献   

8.
Blends of polypropylene (PP) and thermoplastic elastomers (TPE), namely SBS (styrene‐butadiene‐styrene) and SEBS (styrene‐ethylene/1‐butene‐styrene) block copolymers, were prepared to evaluate the effectiveness of the TPE type as an impact modifier for PP and influence of the concentration of elastomer on the polymer properties. Polypropylene homopolymer (PP‐H) and ethylene–propylene random copolymer (PP‐R) were evaluated as the PP matrix. Results showed that TPEs had a nucleating effect that caused the PP crystallization temperature to increase, with SBS being more effective than SEBS. Microstructure characterization tests showed that in most cases PP/SEBS blends showed the smallest rubber droplets regardless of the matrix used. It was seen that SEBS is a more effective toughening agent for PP than SBS. At 0°C the Izod impact strength of the PP‐H/SEBS 30% b/w blend was twofold higher than the SBS strength, with the PP‐R/SEBS 30% b/w blend showing no break. A similar behavior on tensile properties and flexural modulus were observed in both PP/TPE blends. Yield stress and tensile strength decreased and elongation at break increased by expanding the dispersed elastomeric phase in the PP matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 254–263, 2005  相似文献   

9.
The composition effect on morphology of polypropylene/ethylene–propylene–diene terpolymer/polyethylene (PP/EPDM/PE) and polypropylene/ethylene–propylene–diene terpolymer/polystyrene (PP/EPDM/PS) ternary blends has been investigated. In all of the blends, polypropylene as the major phase was blended with two minor phases, that is, EPDM and PE or PS. From morphological studies using the SEM technique a core–shell morphology for PP/EPDM/PE and separated dispersed morphology for PP/EPDM/PS were observed. These results were found to be in agreement with the theoretical predictions. The composition of components affected only the size of dispersed phases and had no appreciable effect on the type of morphology. The size of each dispersed phase, whether it forms core or shell or disperses separately in matrix, can be related directly to its composition in the blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1138–1146, 2001  相似文献   

10.
The morphology of some ternary blends was investigated. In all of the blends polypropylene, as the major phase, was blended with two different minor phases, ethylene–propylene–diene terpolymer (EPDM) or ethylene–propylene–rubber (EPR) as the first minor phase and high‐density polyethylene (HDPE) or polystyrene (PS) as the second minor phase. All the blends were investigated in a constant composition of 70/15/15 wt %. Theoretical models predict that the dispersed phase of a multiphase polymer blend will either form an encapsulation‐type phase morphology or phases will remain separately dispersed, depending on which morphology has the lower free energy or positive spreading coefficient. Interfacial interaction between phases was found to play a significant role in determining the type of morphology of these blend systems. A core–shell‐type morphology for HDPE encapsulated by rubber was obtained for PP/rubber/PE ternary blends, whereas PP/rubber/PS blends showed a separately dispersed type of morphology. These results were found to be in good agreement with the theoretical predictions. Steady‐state torque for each component was used to study the effect of melt viscosity ratio on the morphology of the blends. It was found that the torque ratios affect only the size of the dispersed phases and have no appreciable influence on the type of morphology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1129–1137, 2001  相似文献   

11.
Melt rheological properties of the ternary blend of isotactic polypropylene (PP), styreneethylene–butylene–styrene terpolymer (SEBS), and polycarbonate (PC), PP/SEBS/PC, are studied in a wide range of composition, such that PP is the matrix and SEBS and PC are the minor components, with the proportion of one varying from 0 to 30% at various fixed compositions of the other. The respective binary blends, PP/SEBS and PP/PC, studied as the reference systems for interpretation of results on the ternary blends yielded interesting new information about the morphology development and its correlation with melt rheological properties of these binary blends. The studies include the measurement of melt rheological properties on a capillary rheometer in the shear rate range 101–104 s?1 at a fixed temperature of 240°C. The data presented as conventional flow curves are analyzed for the effect of blend composition and shear rate on pseudoplasticity, melt viscosity, and melt elasticity, and role of each individual component is identified. Morphology of dispersed phases of these blends is studied through scanning electron microscopy of the cryogenically fractured and suitably etched surfaces. Variations of morphology with blend composition and shear rate showed interesting correlation with melt rheological properties, which are discussed in detail. An important finding of the morphological studies is that in the PP/SEBS/PC ternary blend the SEBS phase forms two types of morphologies depending on the blend composition and shear rate: (i) simple droplets and (ii) boundary layer at the surface of the PC droplets. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The effects of different functionalized polypropylene (PP) and diethyl maleate (DEM) combined with styrene–ethylene–butene–styrene copolymer (SEBS) on various properties of extruded-stretched films of polypropylene/ethylene vinyl alcohol (PP/EVOH) blends were studied. The stretched films of the original PP/EVOH blends and those of the polymer-g-DEM modified blends showed lamellar-type morphology, whereas their maleic anhydride (MAH) functionalized counterparts showed fibrillar morphology. Such peculiar morphology resulted in a dramatic decrease of oxygen permeability as compared with the unmodified or MAH modified PP/EVOH blends. These spectacular improvements in barrier properties were obtained without much altering thermal and mechanical properties of the blend. POLYM. ENG. SCI., 47:1114–1121, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
The mechanical, rheological, and morphological properties of polystyrene (PS)/lignin blends over a wide range of lignin content (0–80 wt%) have been studied in this work. PS/lignin blends were compounded in an internal batch mixer with and without the addition of a linear triblock copolymer based on styrene, ethylene, and butylene (SEBS). A morphological analysis was carried out by scanning electron microscopy to determine the state of dispersion and the interfacial adhesion between the lignin particles and the PS matrix. It was found that the flexural and torsion moduli both increased, while the tensile properties decreased with increasing lignin content. Nevertheless, compatibilizer addition was found to improve the tensile properties of the lignin/PS blend. The shear rheological behavior of the lignin/PS blends was also studied in this work where viscosity, dynamic moduli, and activation energy were found to be very sensitive to both lignin and compatibilizer contents. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Poly(styrene‐ethylene/butylene‐styrene) (SEBS) was used as a compatibilizer to improve the thermal and mechanical properties of recycled poly(ethylene terephthalate)/linear low‐density polyethylene (R‐PET/LLDPE) blends. The blends compatibilized with 0–20 wt % SEBS were prepared by low‐temperature solid‐state extrusion. The effect of SEBS content was investigated using scanning electron microscope, differential scanning calorimeter, dynamic mechanical analysis (DMA), and mechanical property testing. Morphology observation showed that the addition of 10 wt % SEBS led to the deformation of dispersed phase from spherical to fibrous structure, and microfibrils were formed at the interface between two phases in the compatibilized blends. Both differential scanning calorimeter and DMA results revealed that the blend with 20 wt % SEBS showed better compatibility between PET and LLDPE than other blends studied. The addition of 20 wt % of SEBS obviously improved the crystallizibility of PET as well as the modulus of the blends. DMA analysis also showed that the interaction between SEBS and two other components enhanced at high temperature above 130°C. The impact strength of the blend with 20 wt % SEBS increased of 93.2% with respect to the blend without SEBS, accompanied by only a 28.7% tensile strength decrease. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Compatibilizing effects of styrene/rubber block copolymers poly(styrene‐b‐butadiene‐b‐styrene) (SBS), poly(styrene‐b‐ethylene‐co‐propylene) (SEP), and two types of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), which differ in their molecular weights on morphology and selected mechanical properties of immiscible polypropylene/polystyrene (PP/PS) 70/30 blend were investigated. Three different concentrations of styrene/rubber block copolymers were used (2.5, 5, and 10 wt %). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the phase morphology of blends. The SEM analysis revealed that the size of the dispersed particles decreases as the content of the compatibilizer increases. Reduction of the dispersed particles sizes of blends compatibilized with SEP, SBS, and low‐molecular weight SEBS agrees well with the theoretical predictions based on interaction energy densities determined by the binary interaction model of Paul and Barlow. The SEM analysis confirmed improved interfacial adhesion between matrix and dispersed phase. The TEM micrographs showed that SBS, SEP, and low‐molecular weight SEBS enveloped and joined pure PS particles into complex dispersed aggregates. Bimodal particle size distribution was observed in the case of SEP and low‐molecular weight SEBS addition. Notched impact strength (ak), elongation at yield (εy), and Young's modulus (E) were measured as a function of weight percent of different types of styrene/rubber block copolymers. The ak and εy were improved whereas E gradually decreased with increasing amount of the compatibilizer. The ak was improved significantly by the addition of SEP. It was found that the compatibilizing efficiency of block copolymer used is strongly dependent on the chemical structure of rubber block, molecular weight of block copolymer molecule, and its concentration. The SEP diblock copolymer proved to be a superior compatibilizer over SBS and SEBS triblock copolymers. Low‐molecular weight SEBS appeared to be a more efficient compatibilizer in PP/PS blend than high‐molecular weight SEBS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 291–307, 1999  相似文献   

17.
The morphology and mechanical properties of a styrene–ethylene/butylene–styrene triblock copolymer (SEBS) incorporated with high‐density polyethylene (HDPE) particles were investigated. The impact strength and tensile strength of the SEBS matrix obviously increased after the incorporation of the HDPE particles. The microstructure of the SEBS/HDPE blends was observed with scanning electron microscopy and polar optical microscopy, which illustrated that the SEBS/HDPE blends were phase‐separation systems. Dynamic mechanical thermal analysis was also employed to characterize the interaction between SEBS and HDPE. The relationship between the morphology and mechanical properties of the SEBS/HDPE blends was discussed, and the toughening mechanism of rigid organic particles was employed to explain the improvement in the mechanical properties of the SEBS/HDPE blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Processing and compatibilization effects on the phase morphology and the tensile behavior of blends of polystyrene and high-density polyethylene (PS/HDPE) were investigated. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in immiscible PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of a styrene/ethylene-butylene/styrene (SEBS) compatibilizer was found to be negligible. In the subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were found to be responsible for the morphological evolution. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. Tensile tests performed on compression molded and injection molded blends showed that the mechanical behavior of PS/HDPE blends depend strongly upon the matrix orientation as well as the dispersed phase morphology and orientation. In both postforming operations, compatibilization effects on the morphological stability and the tensile behavior of PS/HDPE blends were found to be dependent upon the composition and the rheological behavior of the blend. Evidence of adhesion between the PS and HDPE phases was observed in the presence of SEBS in HDPE-rich blends.  相似文献   

19.
Polypropylene blends containing a dispersed phase of scrap rubber dusts obtained from sport shoes manufacture; midsole (M, vulcanized EVA foam) and outsole (O, vulcanized rubber blend of NR, SBR, and BR) were studied. The influence of various compatibilizers on the mechanical properties of these blends were investigated. Significant development of impact strength was attained by using 6 and 10 phr of styrene–ethylene–butylene–styrene (SEBS) and maleic anhydride‐grafted styrene–ethylene–butylene–styrene (SEBS‐g‐MA) as compatibilizers for both compounds filled with midsole and outsole dusts. The tensile strength of each compound was slightly decreased when the compatibilizer loading increased, whereas the elongation at break was significantly increased. The enhancements of the impact strength and the elongation at break are believed to arise from reduction of interfacial tension between two phases of the rubber and the PP, which results in some reduction of the particle size of the fillers. Scanning electron microscopy (SEM) confirmed the evidence of the reduction of scrap rubber dust into small rubber particle sizes in the compound, and also showed the occurrence of some fibrils. Optical microscopy (crossed polars) observations suggested that the addition of the rubber dust resulted in a less regular spherulite texture and less sharp spherulite boundaries. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 148–159, 2002  相似文献   

20.
In this study, the molten ε‐caprolactam (CL) solution of maleated styrene‐ethylene/butylene‐styrene block copolymer (SEBS‐g‐MA) and polystyrene (PS) containing catalyst and activator were introduced into a twin screw extruder, and polyamide 6 (PA6)/SEBS/PS blends were successfully prepared via anionic polymerization of CL by reactive extrusion. The mechanical properties measurements indicated that both the elongation at break and notched Izod impact strength of PA6/SEBS/PS (85/10/5) blends were improved distinctly with slight loss of tensile and flexural strength as compared to that of pure PA6. The images of transmission electron microscopy showed that a core–shell structure with PS core and poly (ethene‐co‐1‐butene) (PEB) shell was formed within the PA6 matrix. Fourier transform infrared was used to investigate the formation mechanisms of the core–shell structure. POLYM. ENG. SCI., 53:2705–2710, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号