首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a 3-dimensional (3D) network structure of cellulose scaffold (CS), which was in situ decorated with silver nanoparticles (AgNPs). The scaffold was then infiltrated with epoxy matrix and cured at elevated temperature to sinter the AgNPs; finally, highly thermoconductive epoxy composites (Ag@CS/epoxy) was obtained. The resultant Ag@CS20/epoxy composite reached a thermal conductivity of 2.52 W·m−1·K−1 at 2.2 vol% of filler loading, which shows an enhancement of over 11-folds in the thermal conductivity compared to the neat epoxy. The superb electrical conductivity value of over 53,691 S·m−1 of the Ag@CS20/epoxy was achieved, which led to exceptional EMI SE values of 69.1 dB. Furthermore, surface temperatures during heating and cooling were also investigated to demonstrate the superior heat dissipating capacity of the Ag@CS/epoxy composite, which can be potentially put an application as thermal dissipating material in the next generation of electronics.  相似文献   

2.
Silicon nitride (Si3N4) filled linear low-density polyethylene (LLDPE) composite was prepared. The effects of Si3N4 filler content, dispersion, and LLDPE particle size on the thermal conductivity, and Si3N4 filled content on the mechanical and electrical properties of Si3N4 reinforced LLDPE composites prepared using powder mixing were investigated. The results indicate that there existed a unique dispersion state of Si3N4 particles in LLDPE, shell-kernel structure, in which Si3N4 particles surrounded LLDPE matrix particles. With increasing filler content and LLDPE particles size, thermal conductivity increased, and reached 1.42 W/m K at 30 vol% of filler, seven times as that of unfilled LLDPE. Furthermore, the examinations of Agari model demonstrate that larger size LLDPE particles form thermal conductive networks easily compared with smaller ones. The values predicted by theoretical model underestimate the thermal conductivity of Si3N4/LLDPE composites. In addition, the composites still possessed rather higher electrical resistivity and dielectric properties, but the mechanical properties decreased. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

3.
The epoxy molding compound (EMC) with thermal conductive pathways was developed by structure designing. Three kinds of EMCs with different thermal conductivities were used in this investigation, specifically epoxy filled with Si3N4, filled with hybrid Si3N4/SiO2, and filled with SiO2. Improved thermal conductivity was achieved by constructing thermal conductive pathways using high thermal conductivity EMC (Si3N4) in low thermal conductivity EMC (SiO2). The morphology and microstructure of the top of EMC indicate that continuous network is formed by the filler which anticipates heat conductivity. The highest thermal conductivity of the EMC was 2.5 W/m K, reached when the volume fraction of EMC (Si3N4) is 80% (to compare with hybrid Si3N4/SiO2 filled‐EMC, the content of total fillers in the EMC was kept at 60 vol %). For a given volume fraction of EMC (Si3N4) in the EMC system, thermal conductivity values increase according to the order EMC (Si3N4) particles filled‐EMC, hybrid Si3N4/SiO2 filled‐EMC, and EMC(SiO2) particles filled‐EMC. The coefficient of thermal expansion (CTE) decreases with increasing Si3N4 content in the whole filler. The values of CTE ranged between 23 × 10?6 and 30 × 10?6 K?1. The investigated EMC samples have a flexural strength of about 36–39 MPa. The dielectric constant increases with Si3N4 content but generally remains at a low level (<6, at 1 MHz). The average electrical volume resistivity of the EMC samples are higher than 1.4 × 1010 Ω m, the average electrical surface resistivity of the EMC samples are higher than 6.7 × 1014 Ω. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Silicon nitride/glass fiber (Si3N4/GF) hybrid fillers are performed to prepare the Si3N4/GF/epoxy composites. Results showed the thermal conductivities of the Si3N4/GF/epoxy composites that are improved with the addition of Si3N4, and the thermal conductive coefficient λ is 1.412 W/mK with 38 vol% modified Si3N4/GF hybrid fillers (30 vol% Si3N4 + 8 vol% GF), seven times higher than that of pure epoxy resin. The flexural strength and impact strength of the composites are optimal with 13 vol% modified Si3N4/GF hybrid fillers (5 vol% Si3N4 + 8 vol% GF). The dielectric constant and dielectric loss of the composites are increased with the increasing addition of Si3N4. For a given Si3N4/GF hybrid fillers loading, the surface modification can further improve the thermal conductivities of the Si3N4/GF/epoxy composites. POLYM. COMPOS., 35:1338–1342, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Si3N4 ceramic/42CrMo steel joints were obtained by employing TiNp modified Ag–Cu–Ti active filler and subsequently the effect of TiNp content on the microstructure and mechanical properties of the joints was investigated. Microstructural examination revealed that TiN+Ti5Si3 reaction layer was adjacent to the Si3N4 ceramic while a TiC reaction layer was close to the steel substrate. With the increase of TiNp content, more fine grains and less Ag–Cu eutectic appeared in the joint and the reaction layers near the two base materials became thinner. The flexural strength of the joint obtained by four-point bending test climbed about 100% with the optimum TiNp content of 5 vol%, comparing with the case without TiNp. Thermal stress distributions in the joint were analyzed using finite element modeling computations, which accorded well with the bending test results.  相似文献   

6.
Enhancement of the thermal conductivity of silicon nitride is usually achieved by sacrificing its mechanical properties (bending strength). In this study, β-Si3N4 ceramics were prepared using self-synthesized Y3Si2C2 and MgO as sintering additives. It was found that the thermal conductivity of the Si3N4 ceramics was remarkably improved without sacrificing their mechanical properties. The microstructure and properties of the Si3N4 ceramics were analyzed and compared with those of the Y2O3-MgO additives. The addition of Y3Si2C2 eliminated the inherent SiO2 and introduced nitrogen to increase the N/O ratio of the grain-boundary phase, inducing Si3N4 grain growth, increasing Si3N4 grain contiguity, and reducing lattice oxygen content in Si3N4. Therefore, by replacing Y2O3 with Y3Si2C2, the thermal conductivity of the Si3N4 ceramics was significantly increased by 31.5% from 85 to 111.8Wm−1K−1, but the bending strength only slightly decreased from 704 ± 63MPa to 669 ± 33MPa.  相似文献   

7.
In this paper, high thermal conductivity Si3N4 ceramics were successfully fabricated through exploring and optimizing the tape casting process. The impact of various organic additives on the rheological characteristics of Si3N4 slurry was explored, and the pore size distribution and microstructure of the green tapes at different solid loadings were investigated, as well as the microstructure of Si3N4 ceramics. Green tapes with a narrow pore size distribution, a small average pore size, and a high density of 1.88 g cm−3 were prepared by the investigation and optimization of the Si3N4 slurry formulation. After gas pressure sintering, Si3N4 ceramics with a density of 3.23 g cm−3, dimensions of 78 mm × 78 mm, and a thickness of 0.55 mm were obtained. The microstructure of the Si3N4 ceramics showed a bimodal distribution and a low content of glassy phases. The thermal conductivity of the Si3N4 ceramics was 100.5 W m−1 K−1, the flexural strength was 735 ± 24 MPa, and the fracture toughness was 7.17 MPa m1/2.  相似文献   

8.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

9.
Si3N4@(TiN–Si3N4) composites with heteroshelled structure were designed for enhanced conductivity and successfully synthesized through the simultaneous reduction and in‐situ cocoating process in liquid ammonia at around ?40°C. The heteroshells were composed of nanosized TiN and Si3N4 particles, which were amorphous with the size ranging from 10 to 40 nm. Using spark plasma sintering, dense bulk composite with >98.1% relative density of theoretical value were obtained and their electrical conductivity were increased to an adequate value (6.62 × 102 S·cm?1) for electrical discharge machining by compositing 15 vol% TiN to Si3N4, which is superior to the previous reports. The excellent electric performance could be attributed to the heteroshelled structure which guarantees the conductive network can be formed and kept with minimal TiN content. The nanosized Si3N4 powders in the shells reduce the content of conductive powders and limit the growth of TiN particles.  相似文献   

10.
Si3N4 ceramics were prepared by gas pressure sintering at 1900°C for 12 h under a nitrogen pressure of 1 MPa using Gd2O3 and MgSiN2 as sintering additives. The effects of the Gd2O3/MgSiN2 ratio on the densification, microstructure, mechanical properties, and thermal conductivity of Si3N4 ceramics were systematically investigated. It was found that a low Gd2O3/MgSiN2 ratio facilitated the thermal diffusivity of Si3N4 ceramics while a high Gd2O3/MgSiN2 ratio benefited the densification and mechanical properties. When the Gd2O3/MgSiN2 ratio was 1:1, Si3N4 ceramics obtained an obvious exaggerated bimodal microstructure and the optimal properties. The thermal conductivity, flexural strength, and fracture toughness were 124 W·m−1·k−1, 648 MPa, and 9.12 MPa·m1/2, respectively. Comparing with the results in the literature, it was shown that Gd2O3-MgSiN2 was an effective additives system for obtaining Si3N4 ceramics with high thermal conductivity and superior mechanical properties.  相似文献   

11.
《Ceramics International》2022,48(18):25673-25680
The trial-and-error method used in ceramics research has certain limitations such as the high blindness of material component design. Moreover, calculations of the toughness of ceramics using the extended finite element method, which is the most broadly applied technique, are complicated. To overcome these issues, in this study, multilayer graphene (MLG)/Si3N4 whisker (Si3N4w)-reinforced Si3N4 ceramics (MWSCs) were used as the model material, and the modeling of MWSCs was conducted using Voronoi tessellation. Additionally, a more concise novel approach was applied for the prediction of the fracture toughness of MWSCs. Furthermore, the optimal MLG and Si3N4w contents were predicted, and then they were verified by fabricating MWSCs using spark plasma sintering (SPS). Simulation results indicated that the optimum MLG and Si3N4w contents to enable the toughness and hardness to reach the maximum values (9.87 MPa·m1/2 and 23.19 GPa) were 1 wt% and 3 wt%, which were consistent with the experimental results. Consequently, the effectiveness of the proposed method was verified. Moreover, the experimental values of the maximum fracture toughness and hardness were 11.04 MPa·m1/2 and 20.29 GPa, which were 47.20% and 12.10% higher than those of Si3N4 ceramics reinforced with 1 wt% MLG, respectively. The synergistic toughening effects of MLG and Si3N4w were significantly reflected. The load-bearing effect, bridging, and crack deflection induced by MLG and Si3N4w were the key reasons for the improvement in the mechanical properties of MWSCs.  相似文献   

12.
Silicon nitride (Si3N4) is an excellent engineering ceramic with high strength, fracture toughness, wear resistance, and good chemical and thermal stability. Recently, the enhanced thermal conductivity enables Si3N4 to have potential application prospects in the electronic and orthopedic fields. Metal bonding with Si3N4 is often the key to these applications. Here we report a facile approach for the titanium-activated Cu bonding on Si3N4 substrates using an atmosphere plasma spray (APS) process. With X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) observation, it was shown that the interaction between the pre-bonded Ti (by APS) on Si3N4 promoted the adhesion and high bonding strength of APS Cu on Si3N4. The interfacial structure and phases were characterized, and tensile strength, electrical resistivity, thermal conductivity, and residual stress of Cu bonded Si3N4 were measured accordingly. The APS deposited Cu layer is dense, has a high purity, and is joined firmly with Ti pre-bonded Si3N4 substrate. The maximum tensile strength between Cu and Si3N4 is as high as 89.4 MPa. The Si3N4 substrate bonded with highly dense Cu demonstrates a low surface resistivity of 8.72 × 10−4 Ω∙mm, and high thermal conductivity of 98.12 W/m·K, which shows potential applications in electronic devices.  相似文献   

13.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   

14.
《Ceramics International》2019,45(10):12757-12763
Dense silicon nitride (Si3N4) ceramics were prepared using Y2O3 and MgF2 as sintering aids by spark plasma sintering (SPS) at 1650 °C for 5 min and post-sintering annealing at 1900 °C for 4 h. Effects of MgF2 contents on densification, phase transformation, microstructure, mechanical properties, and thermal conductivity of the Si3N4 ceramics before and after heat treatment were investigated. Results indicated that the initial temperature of liquid phase was effectively decreased, whereas phase transformation was improved as increasing the content of MgF2. For optimized mechanical properties and thermal conductivity of Si3N4, optimum value for MgF2 content existed. Sample with 3 mol.% Y2O3 and 2 mol.% MgF2 obtained optimum flexural strength, fracture toughness and thermal conductivity (857 MPa, 7.4 MPa m1/2 and 76 W m−1 K1, respectively). It was observed that excessive MgF2 reduced the performance of the ceramic, which was caused by the presence of excessive volatiles.  相似文献   

15.
The effect of temperature cycling from ?40 to 250?°C on active metal brazing (AMB) substrates for power modules was investigated using newly developed silicon nitride ceramics with both high thermal conductivity of 140?W?m?1 K?1 and superior fracture toughness of 10.5?MPa?m1/2. Other types of AMB substrates made of AlN or Si3N4 were also tested for comparison. Both visual inspection and acoustic scanning microscopy (ASM) observation of the new Si3N4-AMB substrates after 1000 cycles revealed almost no cracks. In contrast, the Si3N4-AMB substrates with lower fracture toughness experienced crack initiation beneath the corner of the copper plate. The degradation in the bending strength after 1000 cycles was negligible for the new Si3N4-AMB substrates, whereas the bending strength of the other substrates decreased gradually with each thermal cycle. The endurance of the AMB substrates to thermal fatigue could be improved significantly by employing the new tough Si3N4 with high thermal conductivity.  相似文献   

16.
Si3N4 ceramics with high thermal conductivity and outstanding mechanical properties were prepared by adding β-Si3N4 seeds and nanophase α-Si3N4 powders as modifiers. The introduction of β-Si3N4 seeds enhanced the growth of β-Si3N4 grains. Owing to the interlocked structure induced by the β-Si3N4 grains, the fracture toughness of Si3N4 ceramics reached a high value of 7.6 MPa·m1/2; also, the large-sized grains increased the contact possibility of Si3N4 grains, improving the thermal conductivity of Si3N4 ceramics (64 W/(m·K)). Because of the introduction of nanophase α-Si3N4, the flexural strength, fracture toughness, and thermal conductivity of the Si3N4 ceramics increased to 754 MPa, 7.2 MPa·m1/2, and 54 W/(m·K), respectively. According to the analysis of the growth kinetics of Si3N4 grains, the rapid growth of Si3N4 grains was ascribed to the reduction in the activation energy resulting from the introduction of β-Si3N4 seeds and nanophase α-Si3N4.  相似文献   

17.
《Ceramics International》2023,49(19):31439-31444
In this study, the mechanism of the effect of ZrB2 on phase transformation of Si3N4 at a low temperature and the influence of its content on Si3N4-based ceramics were investigated. Previous study has shown that oxide impurities, i.e., B2O3 and ZrO2 on ZrB2 particles, alone cannot contribute to phase transformation of Si3N4 at a low temperature. But, the introduction of 0.5 vol% ZrB2 into Si3N4 ceramics can promote the α-β phase transformation of Si3N4, which is confirmed to be the role of boron by comparison of the experimental results obtained from the addition of 0.5 vol% Zr and 0.5 vol% B. Increasing the ZrB2 content from 0 vol% to 2.5 vol% intensifies the α-β phase transformation while decreasing the α phase content of Si3N4-based ceramics, accompanied by a slight grain growth, leading to a decrease in hardness. At the same time, aspect ratio and the quantities of elongated grains per square micron increase, and thus the fracture toughness increases significantly. However, when the content of ZrB2 increases to 5 vol%, the Si3N4-based ceramics not only have a substantial decrease in hardness, but also the fracture toughness fails to be effectively improved due to high porosity and the decrease in aspect ratio and the quantity of elongated grains per square micron. The current study demonstrates that the dense Si3N4-based ceramics with high hardness and toughness (hardness ∼19.9 ± 0.2 GPa, toughness ∼6.27 ± 0.19 MPa m1/2) can be prepared successfully at 1600 °C by introducing 0.5 vol% ZrB2.  相似文献   

18.
《Ceramics International》2016,42(10):11593-11597
A new gelling system based on the polymerization of hydantion epoxy resin and 3,3′-Diaminodipropylamine (DPTA) was successfully developed for fabricating silicon nitride (Si3N4) ceramics. The effects of pH value, the dispersant content, solid volume fraction and hydantion epoxy resin amount on the rheological properties of the Si3N4 slurries were investigated. The relative density of green body obtained from the solid loading of 52 vol% Si3N4 slurry reached up to 62.7%. As the concentration of hydantion epoxy resin increased from 5 wt% to 20 wt%, the flexural strength of Si3N4 green body enhanced from 5.3 MPa to 31.6 MPa. After pressureless sintering at 1780 °C for 80 min, the sintered samples exhibited the unique interlocking microstructure of elongated β-Si3N4 grains, which was beneficial to improve the mechanical properties of Si3N4 ceramics. The relative density, flexural strength and fracture toughness of Si3N4 ceramics reached 97.8%, 687 MPa and 6.5 MPa m1/2, respectively.  相似文献   

19.
《Ceramics International》2022,48(18):26651-26659
With rapid advances in electronic device miniaturization and increasing power density, high thermal conductivity polymer composites with excellent properties are becoming increasingly significant for the progress of next-generation electronic apparatuses. In this work, a new type of three-dimensional (3D) network silicon carbide (SiC) frame and core-shell SiC@SiO2 (SiC@SiO2) were successfully prepared. The effects of different filler forms (dispersed particle filler and three-dimensional continuous filler network) on the thermal conductivity of the composites were compared. The composites based on the three-dimensional filler network exhibited evidently better thermal conductivity improvement rates, compared to their traditional counterparts. The thermal conductivity of the epoxy/SiC@SiO2 composite having a total filler content of 17.0 vol% was 0.857 W/m/K, 328.5% higher than that of pure epoxy resin. Similarly, the thermal conductivity of the EP/3D-SiC composite having a total filler content of 13.8 vol% was 1.032 W/m/K, 416.0% higher than that of pure epoxy resin. The abovementioned stats were proven via molecular simulations. We estimated the interfacial thermal resistance (ITR) of the EP/3D-SiC composite to be 5.98 × 10?8 m2 K/W, which was an order of magnitude lower than that of the epoxy composites without a 3D network. Simultaneously, computerized molecular simulation technology was used to verify the feasibility of the experiment, which provided new ideas for the preparation of other highly thermally conductive materials.  相似文献   

20.
《Ceramics International》2019,45(16):19925-19933
Herein, a low–toxic N, N–dimethylacrylamide (DMAA) system was used in preparation of porous Si3N4 ceramics by aqueous gelcasting, and variations in microstructure and properties with solid loading and calcination temperature were systematically investigated. In the considered solid loading range of 28–44 vol%, all the slurries exhibited superior rheological properties (≤145 mPa⋅s at 95.40 s−1 for 44 vol% solid loading) perfectly suitable for casting. With increasing solid loading, a decreased bulk density (1.71–1.69 g/cm3), volume shrinkage (37.73–13.77%) and flexural strength (46.56–26.75 MPa) of green bodies were obtained, exhibiting better mechanical properties than those derived from the conventional acrylamide (AM) system. Regarding Si3N4 ceramics with various solid loadings, the increase in calcination temperature favored the phase transformation α→β–Si3N4 and β–Si3N4 growth, however, the increased solid loading exhibited an inhibiting effect on those since mass transport in gas phase was blocked due to the disruption of pore connectivity. The resulting microstructure changes imparted Si3N4 ceramics increasing flexural strength (110.36–367.88 MPa), fracture toughness (2.54–5.03 MPa⋅m1/2), as well as decreasing porosity (54.21–41.05%) and pore size (0.38–0.33 μm). This work demonstrates the potential research value of DMAA system in preparing high–performance porous Si3N4 ceramics through gelcasting technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号