首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amorphous silicate grain boundary phases of varying chemistry and amounts were added to 3Y-TZP in order to determine their influence on the superplastic behavior between 1200° and 1300°C and on the room-temperature mechanical properties. Strain rate enhancement at high temperatures was observed in 3Y-TZP containing a glassy grain boundary phase, even with as little as 0.1 wt% glass. Strain rate enhancement was greatest in 3Y-TZP with 5 wt% glass, but the room-temperature hardness, elastic modulus, and fracture toughness were degraded. The addition of glassy grain boundary phases did not significantly affect the stress exponent of 3Y-TZP, but did lower the activation energy for superplastic flow. Strain rate enhancement was highest in samples containing the grain boundary phase with the highest solubility for Y2O3 and ZrO2, but the strain rate did not scale inversely with the viscosity of the silicate phases. Grain boundary sliding accommodated by diffusional creep controlled by an interface reaction is proposed as the mechanism for superplastic deformation in 3Y-TZP with and without glassy grain boundary phases.  相似文献   

2.
A study of the flexural creep response of aluminas reinforced with 10 vol% SiC whiskers was conducted at 1200° and 1300°C at stresses from 50 to 230 MPa in air to evaluate the effect of matrix grain size. The average matrix grain size was varied from 1.2 to 8.0 μm by controlling the hot-pressing conditions. At 1200°C, the creep resistance of alumina composites increases with an increase in matrix grain size, and the creep rate (at constant applied stress) exhibits a grain size exponent of approximately 1. The stress exponent of the creep rate at 1200°C is approximately 2, consistent with a grain boundary sliding mechanism. On the other hand, the creep deformation rate of 1300°C was not sensitive to the alumina grain size. This was seen to be a result of enhanced nucleation and coalescence of creep cavities and the development of macroscopic cracks as the grain size increases. Observations also indicated that the prevalent site for nucleation and growth of creep cavities in coarsegrained materials is at two-grain junctions (grain faces), whereas in fine-grained materials cavities nucleate primarily at triple-grain junctions (grain edges). Electron microscopy studies revealed that the content of any amorphous phase present at whisker-alumina interfaces is independent of alumina grain size (and hot-pressing conditions). In addition, the alumina grain boundaries are quite devoid of amorphous phase(s). This variation in amorphous phase content does not appear to be a factor in the present creep results.  相似文献   

3.
The cyclic fatigue behavior of two grades of hot-pressed silicon nitride was investigated. Flat, cantilever-type specimens were tested at temperatures up to 1300°C, in air, where the load was applied by an eccentric driver rotating at 1800 rpm, with a zero mean stress. The lifetime of the lower purity material at temperatures up to 1200°C was controlled by a stress corrosion mechanism. Above 1200°, and for both grades of material, plastic deformation, probably by grain boundary sliding, was rate controlling.  相似文献   

4.
A SiC-whisker-reinforced alumina composite was crept in compression at 1200° to 1400°C in an air ambient and in nitrogen. The data were described by a power-law-type constitutive relation. The measured value of the stress exponent was n = 1 at 1200°C and n = 3 at 1300° and 1400°C in both ambients. TEM observations were correlated with the measured creep response to determine active deformation mechanisms. Values of n = 1 were associated with diffusional creep and unaccommodated grain-boundary sliding, while values of n = 3 were associated with increased microstructural damage in the form of cavities. Experiments conducted in circulated air resulted in higher creep rates than comparable experiments in nitrogen. The accelerated creep rates were caused by the thermal oxidation of SiC and the resultant formation of a vitreous phase along composite interfaces. The glassy phase facilitated cavitation, weakened interfaces, and enhanced boundary diffusion.  相似文献   

5.
The tensile creep behavior of a siliconized silicon carbide was investigated in air, under applied stresses of 103 to 172 MPa for the temperature range of 1100° to 1200°C. At 1100°C, the steady-state stress exponent for creep was approximately 4 under applied stresses less than the threshold for creep damage (132 MPa). At applied stresses greater than the threshold stress for creep damage, the stress exponent increased to approximately 10. The activation energy for steady-state creep at 103 MPa was approximately 175 kJ/mol for the temperature range of 1100° to 1200°C. Under applied stresses of 137 and 172 MPa, the activation energy for creep increased to 210 and 350 kJ/mol, respectively, for the same temperature range. Creep deformation in the siliconized silicon carbide below the threshold stress for creep damage was determined to be controlled by dislocation processes in the silicon phase. At applied stresses above the threshold stress for creep damage, creep damage enhanced the rate of deformation, resulting in an increased stress exponent and activation energy for creep. The contribution of creep damage to the deformation process was shown to increase the stress exponent from 4 to 10.  相似文献   

6.
Compressive deformation of isotropic and magnetically wetoriented stoichiometric BaO-6Fe2O3 was studied in creep and press forging modes in the temperature range 1000° to 1200°C at stresses to 6000 psi. Texture development was followed by electron microscopy and measured quantitatively by X-ray diffraction. Magnetic properties of the deformation-textured materials were correlated with changes in texture and grain morphology.  相似文献   

7.
The effects of a silicate boundary phase on the high-temperature stress-strain behavior of MgO materials have been studied using a model system MgO-CaMgSiO4 (monticellite, CMS). Specimens were fabricated by hot-pressing, or by hot-pressing and annealing, and contained up to 15% silicate phase. The boundary phase consisted primarily of CMS. The stress-strain behavior of these specimens in the range 1200° to 1400°C was strongly dependent on the degree of continuity of the grain boundary phase and on the temperature.  相似文献   

8.
The compressive creep of carbides having the composition U0.79Pu0.21C1.02 and a sintered density of 11.8 g/cm3 was studied at 1300°, 1400°, and 1500°C and stresses of 2000, 4000, and 6000 psi. The equation which best fitted the data was
   
The dominant creep mechanism was probably grain-boundary sliding. The hardness of monocarbides with various U/Pu ratios was measured from room temperature to 1200°C. Probable mechanisms of deformation are discussed.  相似文献   

9.
The tensile creep and creep rupture behavior of silicon nitride was investigated at 1200° to 1350°C using hotpressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1200°C. Accelerated creep regimes, which were absent below 1300°C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures is attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1200°C; however, the superiority disappeared above 1300°C. Considerably high values, 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1200°C. The primary creep mechanism was considered cavitationenhanced creep. Specimen lifetimes followed the Monkman–Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack coalescence.  相似文献   

10.
The microstructure and its influence on the creep behaviour of carbon derived Si3N4-SiC micro/nanocomposite tested in bending at temperatures from 1200° to 1400°C in air has been studied. No phase and microstructure change after creep test implied that material is stable at tested temperature range. After creep test only partial crystallization of glassy intergranular phase has been observed. Creep parameters n close to 1, apparent activation energy around 350 kJ/mol together with TEM observation indicated that the main creep mechanisms is solution precipitation controlled by interface reaction in combination with grain boundary sliding caused by the amorphous intergranular phases present in microstructure. However, the grain boundary sliding is hindered by local SiC particles interlocking neighboring Si3N4 grains.  相似文献   

11.
Tensile Creep Behavior of Alumina/Silicon Carbide Nanocomposite   总被引:1,自引:0,他引:1  
Tensile creep and creep rupture behaviors of alumina/17 vol% silicon carbide nanocomposite and monolithic alumina Were investigated at 1200° to 1300°C and at 50 to 150 MPa. Compared to the monolithic alumina, the nanocomposite exhibited excellent creep resistance. The minimum creep rate of the nanocomposite was about three orders of magnitude lower and the creep life was 10 times longer than those of the monolith. The nanocomposite demonstrated transient creep until failure, while accelerated creep was observed in the monolith. It was revealed that rotating and plunging of intergranular silicon carbide nanoparticles into the alumina matrix increased the creep resistance with grain boundary sliding.  相似文献   

12.
This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in micro-structure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1000° to 1200°C. Below 1130°C, creep rates were extremely low (∼10−9 S−1), preventing accurate measurement of the stress dependence. Above 1130°C, creep rates were in the 10−8 s−1 range. The creep-rupture strength of the composite at 1100°C was about 75–80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage.  相似文献   

13.
Alumina composites reinforced with 20 vol% SiC whiskers were exposed to applied stresses in four-point flexure at temperatures of 1000°, 1100°, and 1200°C in air for periods of up to 14 weeks. At 1000° and 1100°C, an "apparent" fatigue limit was established at stresses of ∼ 75% of the fast fracture strength. However, after long-term (>6 weeks) tests at 1100°C, some evidence of crack generation as a result of creep cavitation was detected. At 1200°C applied stresses as low as 38% of the 1200°C fracture strength were sufficient to promote creep deformation and accompanying cavitation and crack generation and growth resulting in failures in times of <250 h.  相似文献   

14.
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.  相似文献   

15.
The modified static loading technique for estimating static fatigue limits was used to study the effects of oxidation and temperature on the static fatigue limit, K 10 for crack growth in sintered silicon carbide. For as-machined, unoxidized sintered silicon carbide with a static load time of 4 h, K 10× 2.25 MPa * m1/2 at 1200° and ∼1.75 at 1400°C. On oxidation for 10 h at 1200°C, K 10 drops to ∼1.75 MPam1/2 at 1200° and ∼1.25 at 1400°C when tested in a nonoxidizing ambient. Similar results were obtained at 1200°C for tests performed in air. A tendency for strengthening below the static fatigue limit appears to result from plastic relaxation of stress in the crack-tip region by viscous deformation involving an oxide grain-boundary phase for oxidized material and, possibly, diffusive creep deformation in the case of unoxidized material.  相似文献   

16.
Dense polycrystalline ( p -type) SiC undergoes viscous deformation between 1900° and 2200°C at stresses up to 30,000 psi. A boundary diffusion mechanism is assumed to be rate-controlling; the product of the boundary diffusion coefficient, D b, and the boundary width, W , calculated from the creep data is   相似文献   

17.
Flexural creep studies were conducted in a commercially available alumina matrix composite reinforced with SiC particulates (SiCp) and aluminum metal at temperatures from 1200° to 1300°C under selected stress levels in air. The alumina composite (5 to 10 μm alumina grain size) containing 48 vol% SiC particulates and 13 vol% aluminum alloy was fabricated via a directed metal oxidation process (DIMOX(tm))† and had an external 15 μm oxide coating. Creep results indicated that the DIMOX Al2O3–SiCp composite exhibited creep rates that were comparable to alumina composites reinforced with 10 vol% (8 (μm grain size) and 50 vol% (1.5 μm grain size) SiC whiskers under the employed test conditions. The DIMOX Al2O3–SiCp composite exhibited a stress exponent of 2 at 1200°C and a higher exponent value (2.6) at ≥ 1260°C, which is associated with the enhanced creep cavitation. The creep mechanism in the DIMOX alumina composite was attributed to grain boundary sliding accommodated by diffusional processes. Creep damage observed in the DIMOX Al2O3-SiCp composite resulted from the cavitation at alumina two-grain facets and multiple-grain junctions where aluminum alloy was present.  相似文献   

18.
Creep studies conducted on a unidirectional silicon carbide calcium aluminosilicate composite indicate that the Nicalon fibers provide longitudinal creep strengthening at 1200°C. The deformation is transient in nature because grain growth in the fibers enhances their creep resistance. The' transverse creep strength is considerably smaller, being dominated by the matrix, resulting in appreciable creep anisotropy. This anisotropy leads to severe distortion when off-axis loadings are imposed. Residual stresses develop upon unloading alter creep, and cause superficial matrix cracking.  相似文献   

19.
Creep behavior of polycrystalline A12O3 doped with MgO + NiO, both as-hot-pressed in graphite dies and additionally annealed, was determined for 1300° to 1470°C and for 1000 to 15,000 psi in compression. The deformed specimens contained intergranular separations. Creep rates were proportional to stress to the 1.1 and 1.3 powers and were independent of grain size changes occurring during creep. The suggested creep mechanism is localized plastic deformation at stress concentration points accommodated by grain-boundary separations initiated by grain-boundary sliding.  相似文献   

20.
The compressive creep of 18 mol% CaO-stabilized ZrO2 was studied at 1200° to 1400°C and 500 to 4000 psi. The specimens were polycrystalline with grain diameters from 7 to 29 μm. The activation energy for creep is 94 kcal/mol, and the creep rates are linearly proportional to the stress and to the inverse of the grain size. These results lead to the conclusion that creep in 18 mol% CaO-stabilized ZrO2 may be controlled by cation diffusion associated with grain-boundary sliding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号