共查询到4条相似文献,搜索用时 0 毫秒
1.
The current paradigm of major histocompatibility complex (MHC) and disease association suggests that efficient binding of autoantigens by disease-associated MHC molecules leads to a T cell-mediated immune response and resultant autoimmune sequelae. The data presented below offer a different model for this association of MHC with autoimmune diabetes. We used several mouse lines expressing different levels of I-Ag7 and I-Ak on the nonobese diabetic (NOD) background to evaluate the role of MHC class II in the previously described NOD T cell autoproliferation. The ratio of I-Ag7 to I-Ak expression correlated with the peripheral T cell autoproliferative phenotype in the mice studied. T cells from the NOD, [NOD x NOD. I-Anull]F1, and NOD I-Ak transgenic mice demonstrated autoproliferative responses (after priming with self-peptides), whereas the NOD.H2(h4) (containing I-Ak) congenic and [NOD x NOD. H2(h4) congenic]F1 mice did not. Analysis of CD4(+) NOD I-Ak transgenic primed lymph node cells showed that autoreactive CD4(+) T cells in the NOD I-Ak transgenic mice were restricted exclusively by I-Ag7. Considered in the context of the avidity theory of T cell activation and selection, the reported poor peptide binding capacity of NOD I-Ag7 suggested a new hypothesis to explain the effects of MHC class II expression on the peripheral autoimmune repertoire in NOD mice. This new explanation suggests that the association of MHC with diabetes results from "altered" thymic selection in which high affinity self-reactive (potentially autoreactive) T cells escape negative selection. This model offers an explanation for the requirement of homozygous MHC class II expression in NOD mice (and in humans) in susceptibility to insulin-dependent diabetes mellitus. 相似文献
2.
IS Grewal KD Grewal FS Wong DE Picarella CA Janeway RA Flavell 《Canadian Metallurgical Quarterly》1996,184(5):1963-1974
Lately, TNF alpha has been the focus of studies of autoimmunity; its role in the progression of autoimmune diabetes is, however, still unclear. To analyze the effects of TNF alpha in insulin-dependent diabetes mellitus (IDDM), we have generated nonobese diabetic (NOD) transgenic mice expressing TNF alpha under the control of the rat insulin II promoter (RIP). In transgenic mice, TNF alpha expression on the islets resulted in massive insulitis, composed of CD4+ T cells, CD8+ T cells, and B cells. Despite infiltration of considerable number of lymphoid cells in islets, expression of TNF alpha protected NOD mice from IDDM. To determine the mechanism of TNF alpha action, splenic cells from control NOD and RIP-TNF alpha mice were adoptively transferred to NOD-SCID recipients. In contrast to the induction of diabetes by splenic cells from control NOD mice, splenic cells from RIP-TNF alpha transgenic mice did not induce diabetes in NOD-SCID recipients. Diabetes was induced however, in the RIP-TNF alpha transgenic mice when CD8+ diabetogenic cloned T cells or splenic cells from diabetic NOD mice were adoptively transferred to these mice. Furthermore, expression of TNF alpha in islets also downregulated splenic cell responses to autoantigens. These data establish a mechanism of TNF alpha action and provide evidence that local expression of TNF alpha protects NOD mice from autoimmune diabetes by preventing the development of autoreactive islet-specific T cells. 相似文献
3.
A rearranged T cell receptor (TCR) Valpha and Jalpha gene from a cytochrome c-specific T cell hybridoma was introduced into the genomic Jalpha region. The introduced TCR alpha chain gene is expressed in a majority of CD3 positive and CD4 CD8 double-negative immature thymocytes. However, only a few percent of the double-positive and single-positive thymocytes express this TCR alpha chain. This decrease is caused by a rearrangement of TCR alpha chain locus, which deletes the introduced TCR gene. Analysis of the mice carrying the introduced TCR alpha chain and the transgenic TCR beta chain from the original cytochrome c-specific T cell hybridoma revealed that positive selection efficiently rescues double-positive thymocytes from the loss of the introduced TCR alpha chain gene. In the mice with negatively selecting conditions, T cells expressing the introduced TCR alphabeta chains were deleted at the double-positive stage. However, a large number of thymocytes escape negative selection by using an endogenous TCR alpha chain created by secondary rearrangement maintaining normal thymocyte development. These results suggest that secondary rearrangements of the TCR alpha chain gene play an important role in the formation of the T cell repertoire. 相似文献
4.
DJ Matthews L Hibbert K Friedrich A Minty RE Callard 《Canadian Metallurgical Quarterly》1997,27(1):116-121
We previously reported that patients with mild to moderate airflow limitation have a lower exercise capacity than age-matched controls with normal lung function, but the mechanism of this reduction remains unclear (1). Although the reduced exercise capacity appeared consistent with deconditioning, the patients had altered breathing mechanics during exercise, which raised the possibility that the reduced exercise capacity and the altered breathing mechanics may have been causally related. Reversal of reduced exercise capacity by an adequate exercise training program is generally accepted as evidence of deconditioning as the cause of the reduced exercise capacity. We studied 11 asymptomatic volunteer subjects (58 +/- 8 yr of age [mean +/- SD]) selected to have a range of lung function (FEV1 from 61 to 114% predicted, with a mean of 90 +/- 18% predicted). Only one subject had an FEV1 of less than 70% predicted. Gas exchange and lung mechanics were measured during both steady-state and maximal exercise before and after training for 30 min/d on 3 d/wk for 10 wk, beginning at the steady-state workload previously determined to be the maximum steady-state exercise level that subjects could sustain for 30 min without exceeding 90% of their observed maximal heart rate (HR). The training workload was increased if the subject's HR decreased during the training period. After 10 wk, subjects performed another steady-state exercise test at the initial pretraining level, and another maximal exercise test. HR decreased significantly between the first and second steady-state exercise tests (p < 0.05), and maximal oxygen uptake (VO2max) and ventilation increased significantly (p < 0.05) during the incremental test, indicating a training effect. However, the training effect did not occur in all subjects. Relationships between exercise parameters and lung function were examined by regression against FEV1 expressed as percent predicted. There was a significant positive correlation between VO2max percent predicted and FEV1 percent predicted (p < 0.02), and a negative correlation between FEV1 and end-expiratory lung volume (EELV) at maximal exercise (p < 0.03). There was no significant correlation between FEV1 and maximal HR achieved during exercise; moreover, all subjects achieved a maximal HR in excess of 80% predicted, suggesting a cardiovascular limitation to exercise. These data do not support the hypothesis that the lower initial VO2max in the subjects with a reduced FEV1 was due to deconditioning. Although increased EELV at maximal exercise, reduced VO2max and a reduced VO2max response with training are all statistically associated with a reduced FEV1, there is no direct evidence of causality. 相似文献