首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an indirect linear-phase IIR filter design technique based on a reduction of linear-phase FIR filters. The desired filter is obtained by minimizing the L2 norm of the difference between the original FIR filter and the lower order IIR filter. We first establish a relationship between the Hankel singular values of the discarded part of the FIR filter and the L2 norm of the corresponding filter approximation error based on model truncation. This result motivates us to propose a simple finite search method that will achieve better approximation results than commonly used truncation methods such as the balanced truncation (BT) and the impulse response gramian (IRG) methods. We then develop an iterative algorithm for finding an optimal IIR filter based on a matrix projection of the original FIR filter. The convergence of the proposed algorithm is established. Filters designed using the proposed algorithm are compared with those obtained by other techniques with respect to the amplitude response and group delay characteristics in the passband. Numerical examples show that the proposed algorithm offers the best performance  相似文献   

2.
An efficient and fast technique for designing Lp approximation filters using the iterative reweighted least-squares (IRLS) algorithm is proposed. This technique introduces an extra frequency response which implicitly includes the weighting function such that the filter coefficients can be obtained with O(N2) complexity  相似文献   

3.
It is shown that the singular-value decomposition (SVD) of the sampled amplitude response of a two-dimensional (2-D) digital filter possesses a special structure: every singular vector is either mirror-image symmetric or antisymmetric with respect to its midpoint. Consequently, the SVD can be applied along with 1-D finite impulse response (FIR) techniques for the design of linear-phase 2-D filters with arbitrary prescribed amplitude responses which are symmetrical with respect to the origin of the (ωΨω2) plane. The balanced approximation method is applied to linear-phase 2-D FIR filters of the type that may be obtained by using the SVD method. The method leads to economical and computationally efficient filters, usually infinite impulse response filters, which have prescribed amplitude responses and whose phase responses are approximately linear  相似文献   

4.
We present an improved algorithm for an established filter design problem, the design of an FIR filter that best approximates, in the complex Chebyshev sense, a desired complex-valued frequency response. The algorithm is a variant of the simplex algorithm of linear programming, which has an interpretation as an implicit multiple exchange. It is iterative, robust, and exhibits good convergence speed. Global optimum convergence is guaranteed. Both complex and real-valued impulse responses can be designed with it; the design of complex coefficient filters is new. An example is given for each case. The design of noncausal filters is new. In addition to these new applications, we conjecture that this new algorithm may have important advantages over existing techniques, with respect to the maximum filter length possible, speed and stability of convergence, accuracy, and memory requirements. The ability to design long filters is among the more significant improvements over previous work. Filters of length 1000 have been designed with the new method  相似文献   

5.
提出一种基于自适应三角函数基神经网络的二维线性相位FIR滤波器优化设计方法.该方法根据二维线性相位FIR滤波器幅频响应特性,采用三角函数基神经网络优化算法计算滤波器系数,同时在神经网络训练过程引入自适应学习率算法,提高神经网络的学习效率和收敛速度.通过训练神经网络的权值,使二维线性相位FIR滤波器幅频响应与理想幅频响应...  相似文献   

6.
This paper studies the H2 optimal deconvolution problem for periodic finite impulse response (FIR) and infinite impulse response (IIR) channels. It shows that the H2 norm of a periodic filter can be directly quantified in terms of periodic system matrices and linear matrix inequalities (LMIs) without resorting to the commonly used lifting technique. The optimal signal reconstruction problem is then formulated as an optimization problem subject to a set of matrix inequality constraints. Under this framework, the optimization of both the FIR and IIR periodic deconvolution filters can be made convex, solved using the interior point method, and computed by using the Matlab LMI Toolbox. The robust deconvolution problem for periodic FIR and IIR channels with polytopic uncertainties are further formulated and solved, also by convex optimization and the LMIs. Compared with the lifting approach to the design of periodic filters, the proposed approach is simpler yet more powerful in dealing with multiobjective deconvolution problems and channel uncertainties, especially for IIR deconvolution filter design. The obtained solutions are applied to the design of an optimal filterbank yielding satisfactory performance  相似文献   

7.
By using basis transformation, the Chebyshev approximation of linear-phase finite-impulse response (FIR) filters with linear equality constraints can be converted into an unconstrained one defined on a new function space. However, since the Haar condition is not necessarily satisfied in the new function space, the alternating property does not hold for the solution to the resulted unconstrained Chebyshev approximation problem. A sufficient condition for the best approximation is obtained in this brief, and based on this condition, an efficient single exchange algorithm is derived for the Chebyshev design of linear-phase FIR filters with linear equality constraints. Simulations show that the proposed algorithm can converge to the optimal solution in most cases and to a near-optimal solution otherwise. Design examples are presented to illustrate the performance of the proposed algorithm.  相似文献   

8.
The alternation theorem is the core of efficient approximation algorithms for the minimax design of finite-impulse response (FIR) filters. In this paper, an extended alternation theorem with additional mixed constraints, i.e., equality-and-inequality constraints, is obtained. Then, an efficient multiple-exchange algorithm based on the extended theorem is presented for designing linear-phase FIR filters with frequency mixed constraints in the minimax sense. Further, convergence of the algorithm is established. Several design examples and comparisons with existing techniques are presented, and the simulation results show that the proposed algorithm is numerically more efficient and guaranteed to converge to the optimal solution.  相似文献   

9.
The authors deal with the design problem of low-delay perfect-reconstruction filter banks for which the FIR analysis and synthesis filters have equiripple magnitude response. Based on the minimax error criterion, the design problem is formulated in such a manner that the coefficients for the FIR analysis filters can be found by minimising the weighted peak error of the designed analysis filters, subject to the perfect-reconstruction constraints. A design technique based on a modified dual-affine scaling variant of Karmarkar's (1989) algorithm, in conjunction with approximation schemes, is then developed for solving the resulting nonlinear optimisation problem. The effectiveness of the proposed design technique is demonstrated by several simulation examples  相似文献   

10.
High computational complexity is a major problem encountered in the optimal design of two-dimensional (2-D) finite impulse response (FIR) filters. In this paper, we present an iterative matrix solution with very low complexity to the weighted least square (WLS) design of 2-D quadrantally symmetric FIR filters with two-valued weighting functions. Firstly, a necessary and sufficient condition for the WLS design of 2-D quadrantally symmetric filters with general nonnegative weighting functions is obtained. Then, based on this optimality condition, a novel iterative algorithm is derived for the WLS design problem with a two-valued weighting function. Because the filter parameters are arranged in their natural 2-D form and the transition band is not sampled, the computation amount of the proposed algorithm is reduced significantly, especially for high-order filters. The exponential convergence of the algorithm is established, and its computational complexity is estimated. Design examples demonstrating the convergence rate and solution accuracy of the algorithm, as well as the relation between the iteration number of the algorithm and the size and transition-band width of the filter are given.  相似文献   

11.
We address the problem of finite impulse response (FIR) filter design for uniform multiple-input multiple-output (MIMO) sampling. This scheme encompasses Papoulis' generalized sampling and several nonuniform sampling schemes as special cases. The input signals are modeled as either continuous-time or discrete-time multiband input signals, with different band structures. We present conditions on the channel and the sampling rate that allow perfect inversion of the channel. Additionally, we provide a stronger set of conditions under which the reconstruction filters can be chosen to have frequency responses that are continuous. We also provide conditions for the existence of FIR perfect reconstruction filters, and when such do not exist, we address the optimal approximation of the ideal filters using FIR filters and a minmax l/sub 2/ end-to-end distortion criterion. The design problem is then reduced to a standard semi-infinite linear program. An example design of FIR reconstruction filters is given.  相似文献   

12.
This paper proposes a novel iterative algorithm for optimal design of non-frequency-selective Finite Impulse Response (FIR) digital filters based on the windowing method. Different from the traditional optimization concept of adjusting the window or the filter order in the windowing design of an FIR digital filter, the key idea of the algorithm is minimizing the approximation error by successively modifying the design result through an iterative procedure under the condition of a fixed window length. In the iterative procedure, the known deviation of the designed frequency response in each iteration from the ideal frequency response is used as a reference for the next iteration. Because the approximation error can be specified variably, the algorithm is applicable for the design of FIR digital filters with different technical requirements in the frequency domain. A design example is employed to illustrate the efficiency of the algorithm.  相似文献   

13.
A Hopfield-type neural network for the design of 2-D FIR filters is proposed. The network is contrived to have an energy function that coincides with the sum-squared error of the approximation problem at hand and by ensuring that the energy is a monotonic decreasing function of time, the approximation problem can be solved. Two solutions are obtained. In the first the 2-D FIR filter is designed on the basis of a specified amplitude response and in the second a filter that has specified maximum passband and stopband errors is designed. The network has been simulated with HSPICE and design examples are included to show that this is an efficient way of solving the approximation problem for 2-D FIR filters. The neural network has high potential for implementation in analog VLSI and can, as a consequence, be used in real-time applications.  相似文献   

14.
This correspondence considers the design of quadrature mirror filter (QMF) banks whose analysis and synthesis filters are FIR and have linear phase. The design criterion is of least-squares type. An iterative computation algorithm is proposed, and its convergence is proven that offers new insight to the design of QMF banks and relates it to a more general nonlinear optimization problem  相似文献   

15.
The approximation problem for high-order minimum phase FIR filter is solved without requiring any polynomial factorization. A modified Parks-McClellan program is used to compute the amplitude function; the minimum phase function is then derived by a method using the FFT algorithm. The procedure is illustrated by the design of various high order filters; short computation time with no numerical troubles is achieved.  相似文献   

16.
Christoffel–Darboux formula for Chebyshev continual orthogonal polynomials of the first kind is proposed to find a mathematical solution of approximation problem of a one-dimensional (1D) filter function in the z domain. Such an approach allows for the generation of a linear phase selective 1D low-pass digital finite impulse response (FIR) filter function in compact explicit form by using an analytical method. A new difference equation and structure of corresponding linear phase 1D low-pass digital FIR filter are given here. As an example, one extremely economic 1D FIR filter (with four adders and without multipliers) is designed by the proposed technique and its characteristics are presented. Global Christoffel–Darboux formula for orthonormal Chebyshev polynomials of the first kind and for two independent variables for generating linear phase symmetric two-dimensional (2D) FIR digital filter functions in a compact explicit representative form, by using an analytical method, is proposed in this paper. The formula can be most directly applied for mathematically solving the approximation problem of a filter function of even and odd order. Examples of a new class of extremely economic linear phase symmetric selective 2D FIR digital filters obtained by the proposed approximation technique are presented.  相似文献   

17.
The design of equiripple linear-phase analysis and synthesis FIR filters of two-channel perfect-reconstruction (PR) filter banks is formulated as the minimization of a weighted peak-error under both linear inequality (arising from the desired responses of the analysis filters) and nonlinear equality (PR) constraints. The effectiveness of a proposed method to solve the design problem (a modified dual-affine scaling variant of Karmarkar's (1989) algorithm and an approximation scheme) is illustrated through several design examples  相似文献   

18.
A novel frequency-sampling method for designing zero-phase FIR filters from nonuniform samples is presented. The method is fast, simple, recursive and can be used in the design of 1D or 2D zero-phase FIR filters by imposing some mild constraints on sample locations in the 2D frequency plane. Based on a novel Newton representation of the filter transfer function the proposed method guarantees real results, saves a number of operations and produces accurate solutions even in cases of designing high-order filters or when the interpolation matrix is ill-conditioned. In the progressive case when the next sample appears, the design parameters are evaluated by updating the old ones with correction terms that could be used as indicators for convergence, approximation, or filter reduction. The method can be used in mD filter design, in LU-factorization or in inversion of cosine matrices  相似文献   

19.
Let {Dk,Xk} be jointly stationary symmetric α-stable processes with index 1<α<2. We first consider the problem of optimal FIR linear and regression filters. We then consider the signed-error and sign-sign adaptive filtering algorithms for the estimation of the desired signal Dj on the basis of the input vector Xj. Various convergence results are established for the signal and tap weights estimation errors  相似文献   

20.
Constrained least-squares design and constrained Chebyshev design of one- and two-dimensional nonlinear-phase FIR filters with prescribed phase error are considered in this paper by a unified semi-infinite positive-definite quadratic programming approach. In order to obtain unique optimal solutions, we propose to impose constraints on the complex approximation error and the phase error. By introducing a sigmoid phase-error constraint bound function, the group-delay error can be greatly reduced. A Goldfarb–Idnani based algorithm is presented to solve the semi-infinite positive-definite quadratic program resulting from the constrained least-squares design problem, and then applied after some modifications to the constrained Chebyshev design problem, which is proved in this paper to be equivalent also to a semi-infinite positive-definite quadratic program. Through design examples, the proposed method is compared with several existing methods. Simulation results demonstrate the effectiveness and efficiency of the proposed method.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号