首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
深部岩体强度参数的研究相当复杂,与研究尺度、应力状态、应力路径都有关系。以锦屏二级水电站深埋引水隧洞T2b大理岩为研究对象,开展室内标准尺寸岩块岩样、中等尺寸岩石岩样和大尺寸岩体岩样在低–中、中–高、高–极高应力水平下的三轴加、卸载试验,探讨深部岩体强度参数的应力水平效应、应力路径效应和尺寸效应。取得以下成果:(1)获得室内标准尺寸、中等尺寸和大尺寸大理岩岩样在加、卸载应力路径下低–中、中–高、高–极高应力水平下的10组强度参数;(2)大理岩抗剪强度参数随应力水平的变化规律基本相同:随着应力水平的提高,?值逐渐减小、c值逐渐增大,但是,不同尺寸和不同应力路径下,?值和c值随围压应力水平的变化幅度并不相同;(3)相对加载条件,卸载路径下岩体强度参数?值增加,c值减小;(4)在φ50 mm×100 mm至500 mm×500 mm×1 000 mm尺度范围内,大理岩强度参数?值的尺寸效应不明显,而c值的尺寸效应显著。  相似文献   

2.
 目前国内外岩石真三轴试样尺寸倾向于两极,且尺寸跨度大、应力大小不同,不便于研究岩体三轴强度的尺寸效应和高应力环境复杂应力路径岩石的变形与强度特征,为了解决这个问题,研制LWZ–10000型中尺寸岩石真三轴试验系统,详细介绍该系统的设计思路、结构特点、技术指标及功能,该系统具有以下特点:(1) 自动伺服控制与变形破坏全过程数据采集,且精度高、性能稳定;(2) 试样尺寸介于室内和现场三轴试样尺寸之间,且尺寸可变;(3) 侧向和轴向载荷高,且三向独立控制;(4) 可同步进行超声波和声发射跟踪测试。采用该系统对锦屏大理岩进行大量的不同应力路径真三轴试验,对加载和卸载路径真三轴试验的应力–应变全过程曲线及与波速对应关系进行分析,结合大理岩不同尺寸卸载路径的真三轴试验成果,初步研究大理岩卸载路径下强度参数的尺寸效应。该系统的成功研制为研究多向复杂应力路径下不同尺寸深部岩体的变形及强度参数提供了新手段。  相似文献   

3.
 为研究深埋隧洞围岩卸载路径破坏特性,在现场深埋试验平洞内进行大理岩原位高压真三轴卸载试验,获得大尺度(50 cm×50 cm×100 cm)、高应力( =11.2 MPa)、真三轴( > > )、卸 破坏状态下,能反映深埋隧洞围岩实际应力状态和隧洞开挖应力路径的大理岩全过程应力–应变曲线和三轴强度。在高压卸载路径大理岩原位真三轴试验基础上,引入H-B经验强度准则研究大理岩卸载路径真三轴强度参数。研究成果表明:(1) 对于大理岩卸载真三轴原位试验,按H-B经验强度准则评估卸载路径真三轴强度偏低情况较多,评估经验参数s = 0.003 951 7,mb = 3.414,而由试验成果反算s = 0.095 53,mb = 12.208。(2) 在H-B经验强度准则基础上,按M-C强度准则,评估大理岩卸载真三轴试验强度参数:tan? = 1.39,c = 6.61 MPa,评估未扰动大理岩卸载真三轴强度参数:tan? = 1.60,c = 6.73 MPa,前者可代表卸荷损伤岩体。  相似文献   

4.
锦屏大理岩加、卸载应力路径下力学性质试验研究   总被引:4,自引:7,他引:4  
 地下岩体开挖卸荷应力路径不同于加载应力路径,由此引起的岩体强度、变形特征和破坏机制也不尽相同。针对锦屏二级水电站引水隧洞群围岩赋存于高地应力环境的特点,对其中3# 引水隧洞大理岩开展单轴加、卸载以及三轴压缩和高应力条件下的峰前、峰后卸围压等4种不同应力路径力学试验,得到了的应力–应变全过程曲线、变形破坏特征和主要力学参数的变化规律。试验研究结果表明:(1) 建立在岩样单轴逐级等量加、卸载应力路径下的回滞环面积递减,尤以屈服阶段的卸载对应变影响最大;(2) 不同围压下岩样三轴压缩全过程试验结果表明,当围压达到40 MPa时,应变软化特性转化为理想塑性,可以认为该值为锦屏大理岩脆-延转化点;(3) 对比以上不同应力路径下的强度准则方程以及峰前、峰后黏聚力和内摩擦角,相同初始应力条件下,岩石卸载破坏所需应力变化量比三轴压缩破坏情况下对应的应力变化量小,说明岩石卸载更容易导致破坏;(4) 在变形破坏机制方面,由于峰后比峰前卸围压塑性变形大,岩样塑性变形已吸收较多的弹性变形能,其脆性特性受到抑制,因而不像峰前卸围压破坏具有突发性,岩样由张性破坏过渡到张剪性破坏;(5) 根据大理岩岩样加、卸载破坏断口SEM扫描结果,从细观角度验证了脆性岩石在不同路径下微观剪断裂破坏机制。总之,以上研究结果揭示了锦屏大理岩加、卸载应力路径下力学特性差异,对解决工程实际问题具有重要的参考价值。  相似文献   

5.
为获得深部岩体的变形模量,在真三轴试验机上,对中等尺寸大理岩试样进行不同侧压下的变形试验,重点对同一试样进行多个等侧压和不等侧压的对比试验。试验表明:(1) 大理岩的变形模量与侧压之间具有显著的非线性关系,且当侧压增大至30 MPa后,变形模量不再随着侧压的增大而显著增大,该侧压值反映了大理岩脱离母岩后的弱化程度;(2) 建立大理岩的变形模量与三向应力之间的关系,用试样所对应部位地应力值计算出深埋大理岩的变形模量为66.7~68.2 GPa;(3) 变形模量计算值与采用其他间接方法获得的变形模量相当,并显著高于常规室内和现场变形试验值。由此说明,深部岩体在释放应力后容易使其力学性质弱化,弱化程度与所处的地应力大小有关。该方法对研究极高~高地应力环境下深部岩体及偏应力较大的边坡的变形特征具有重大意义。  相似文献   

6.
深部高储能岩体开挖导致应变能释放,并引起快速的卸载破坏,形成岩爆等严重的工程灾害。根据锦屏水电站地下厂房工程环境以及开挖扰动特征,采用真三轴卸载实验、声发射监测、SEM电镜扫描等手段,对高储能岩体在不同应力路径与荷载速率下的卸载强度和破裂演化特征进行研究。实验结果表明:真三轴卸载条件下,大理岩宏观破坏与常规压缩实验过程有显著差别,高储能岩体受卸载路径及卸载速率控制,表现出原位强度为c0.45σ~c0.6σ。结合SEM扫描电镜图像以及声发射参数特征揭示,大理岩卸载破坏呈现张性萌生–剪切交汇–贯通破坏的渐进过程,并受不同的应力路径、卸载速率影响显著。基于上述卸载渐进破坏力学模式,采用劈裂界线、修正的Griffith强度曲线和非线性Mohr-Coulomb强度曲线的组合来解释原位岩体破坏的"S"型曲线规律。研究结果为认识不同条件下地下工程建设中岩爆等快速卸载破坏的形成机制提供理论依据。  相似文献   

7.
大理岩加卸载力学特性的研究   总被引:17,自引:13,他引:17  
利用锦屏一级水电站坝址区边坡的大理岩试件进行了加载和卸载条件下的系列三轴试验,对大理岩在加、卸载条件下的力学参数进行了计算整理,并对其应力–应变全过程曲线进行分析和比较。结果表明,大理岩在不同试验路径下的参数变化明显同加载条件比较,卸载条件下的变形模量减小,相同围压条件下抗压强度减小,而抗剪断强度参数中c值大幅减小、?值略有增加;在破坏过程中表现为卸载条件下侧向应变值较同等围压加载条件时增大,塑性特征减弱而脆性特征增强。这一结果揭示了大理岩在加、卸载条件下力学特性的具体差异,对解决工程实际问题有重要的参考价值。  相似文献   

8.
 为深入研究循环加卸载作用下岩体的变形规律,针对三峡库区砂岩进行了56组循环加卸载试验。根据试验的不同步现象,对应力–应变滞后概念进行修正:(1) 应力超前于应变和应力滞后于应变现象共存,故将“应力–应变滞后现象”更名为“应力–应变不同步现象”更为合理;(2) 在应力–应变不同步现象的基础上,应考虑应力速率–应变速率的不同步现象。通过分析循环加卸载试验的不同步机制,提出应力–应变吸引点、应力速率–应变速率吸引点、应力–应变补偿机制和应力速率–应变速率补偿机制4个概念,并且得到:应力–应变同步与应力速率–应变速率同步不能同时出现;不同步现象是必然而同步仅存在于某一时刻点;应力–应变处于螺旋式循环递进的过程。基于循环加卸载试验,首次发现应力速率–应变速率不同步现象,在不同步现象中提出了3个不同步阶段的定义,并通过分析预测变形速率–实际变形速率、表观弹性模量以及岩样的瞬时泊松比随时间的变化规律,提出3种对不同步阶段定量判别的方法。此外,基于同频率不同峰值强度下试验得到,随着峰值强度 的增加,岩样的 值逐渐增加,式 吻合度也逐渐增加。  相似文献   

9.
为探讨深埋软岩在不同应力路径下力学性质的差异,对取自丹巴水电站右岸平硐深埋软岩分别进行室内三轴加载试验和不同围压等级、不同卸荷应力水平、不同卸荷速率的恒轴压卸围压试验,并对岩样卸荷破坏面进行微观形貌扫描,分别探讨不同条件下岩样的变形、强度及破坏特征,结果发现:(1)相比三轴加载试验,同等级围压的软岩在卸荷条件下的强度、峰值应变及力学参数都有减小,应力–应变曲线从延性向脆性转换;(2)软岩峰值轴向应变、极限强度、残余强度与卸荷应力水平、卸荷速率均呈正相关性;(3)相比Hoek-Brown经验强度准则,Mohr-Coulomb强度准则能更好地描述软岩强度特性,不同应力路径对抗剪强度参数影响有差异性,卸荷速率对c值的影响更为显著,而卸荷应力水平对?值的影响更为显著;(4)软岩加、卸载条件下都发生剪切破坏,加载时除主裂纹外基本没有衍生微裂纹,卸载时,低卸荷应力水平下岩样破坏后的次生裂纹更发育,且卸荷速率越大岩样破坏程度越强烈;低围压下卸荷破坏时,岩石断面微观形貌演化自由度较高,破坏面粗糙度大。  相似文献   

10.
 根据大理岩加荷破坏与卸荷破坏试验结果,研究大理岩不同应力路径下的破坏特征和能量演化规律。结果表明,常规三轴破坏岩样吸收总能量 高于单轴压缩吸收总能量,峰值强度后常规三轴弹性应变能释放比单轴缓慢,储能极限高于单轴压缩的储能极限。随着卸荷初始围压升高,岩样峰值强度和峰值应变增大,破坏形式由张拉–剪切破坏向剪切破坏过渡,岩样在峰值强度处吸收的总能量 和弹性能 增大,耗散能 却没有明显变化,围压对峰值强度处的 和 无明显影响。卸荷速度增大,岩样峰值强度和峰值应变减小,破坏形式由剪切破坏向张拉–剪切破坏过渡,岩样在峰值点处吸收的总能量 和弹性能 减小,耗散能 却没有明显变化,卸荷速度对 和 无明显影响。加荷与卸荷2种应力路径下,岩样在到达峰值强度时所吸收的总能量和储能极限都与峰值强度呈线性关系。  相似文献   

11.
针对黄土工程中的众多平面应变加、卸载问题,利用平面应变改造后的西安理工大学真三轴仪,模拟黄土原位沉积方向及不同初始应力状态,在不同围压下对不同初始应力状态原状黄土进行竖向加载和侧向卸载平面应变试验,揭示不同初始应力状态原状黄土在加、卸载不同应力路径条件下的强度和变形特性。研究结果表明:两种应力路径条件下的应力应变曲线均呈硬化型,加载曲线均高于卸载,加载强度大于卸载强度,但卸载时,土的强度发挥较快。剪切过程中,黄土的侧向变形与竖向变形均呈非线性关系。竖向加载时,土的初始应力状态k值对土强度和变形的影响与固结围压的大小关系紧密;侧向卸载时,k值的增大可以限制侧向变形的发展。竖向加载条件下的体积应变均为剪缩,侧向卸载时均为剪胀。加、卸载条件下p-q平面内的破坏强度线基本一致,近似呈线性关系。侧向卸载条件下土体破坏时的应变远小于竖向加载和常规三轴试验。随着k值的增大,加、卸载应力路径时,黏聚力均线性减小,内摩擦角均线性增大。  相似文献   

12.
 采用全自动三轴伺服仪,对花岗片麻岩开展渗流应力耦合试验,研究常规三轴压缩和轴压循环加卸载2种应力路径下,渗透率与渗压、围压、有效围压、体积应变及应力路径等因素的关系。结果表明:(1) 在2种不同应力路径下,岩石渗透率演化规律有差异性和一致性,同种路径下变形各阶段渗透率随有效围压增大而减小,但渗透率曲线的形态保持不变;(2) 渗压和围压对渗透率的影响,通过对岩石变形过程中内部微裂纹和孔隙变化产生作用,有效应力系数发生改变,有效围压效应随之改变;(3) 循环加卸载试验中,卸载渗透率均明显大于相应加载渗透率,体积应变转折前,加载渗透率减小,卸载后渗透率增加,形成比较完整的渗透率回滞环,体积应变转折后,加载渗透率增大,卸载渗透率降低不能够完全恢复;(4) 体积应变较轴向应变更清楚和灵敏反映渗透率变化规律,可把体积转折应变或其对应应力作为岩石渗透率变化的一项指标。试验研究旨在为岩石工程渗流–应力耦合稳定性分析提供参考。  相似文献   

13.
应力路径不同,岩石变形和破坏过程中伴随的声发射特征也不同,通过不同路径大理岩加、卸荷试验,结合分形维数原理,探讨声发射破坏前兆随应力路径的变化规律。试验结果表明:1岩样破坏处的声发射计数率和破坏前的累计计数率增长率由大变小的应力路径为加轴压卸围压、恒轴压卸围压、单轴、常规三轴路径。2常规三轴路径下岩样临近破坏时,声发射事件计数率存在明显的"低声发射期",围压越大,声发射前兆"低声发射期"越明显;同时累计振铃计数率增长速率降低的拐点出现后很短时间,岩样也会发生破坏。3低围压下恒轴压、卸围压路径岩样破坏时累计振铃计数率的增长速率近似为切线。加轴压、卸围压岩样破坏前一段相近计数率后存在声发射计数率的"平静期",围压增加,"平静期"持续时间增加,岩样破坏产生的计数率越高。4在低围压应力环境下应力比0.8、高围压应力环境下时间比0.4时声发射分维数降低的特征可以作为岩样的破坏前兆分析。  相似文献   

14.
 岩质边坡中岩桥贯通是导致边坡失稳的重要因素,通过开展不同岩桥长度岩样的常规三轴加荷、三轴卸荷以及三轴加卸荷试验,研究在不同应力路径下岩桥贯通破坏过程中的声发射特征,以及围压和岩桥长度对声发射特征的影响。结果表明:岩石压密阶段与线弹性变形阶段声发射事件较少,塑性阶段声发射事件明显增多,破坏阶段声发射计数率、累计能量以及幅值均达到峰值。声发射特征的明显变化可为紧接的岩样破坏提供预警作用,幅值变化较其他指标更为敏感,因此幅值的监测对于各阶段演化以及破坏预警更有效。本试验中,岩桥试样达到峰值强度后不会立即跌落至残余强度,而是出现2次应力跌落,应力跌落均对应声发射特征达到峰值,2次应力跌落中会出现“平静期”或“峰后回升”现象,其声发射特征与塑性阶段相似,但幅值、计数率与累计能量均大于塑性变形阶段,表明在这一阶段岩样裂纹仍以较快速率扩展,最终导致岩桥贯通破坏。不同应力路径下累计能量由大到小依次为:三轴加卸荷、三轴卸荷和常规三轴。随着岩桥长度与围压的增加,声发射计数率峰值和累计能量逐步增长,破坏程度更加剧烈。  相似文献   

15.
不同加载路径下砂岩破坏模式试验研究   总被引:1,自引:1,他引:0  
 鉴于以往对岩石不同加载路径下破坏模式综合研究的成果较少,采用MTS815刚性伺服试验机,对砂岩岩样分别进行单轴压缩、常规三轴压缩和三轴峰前、峰后卸围压4种不同加载路径下的试验,研究砂岩岩样在不同加载路径下的破坏模式,并对砂岩岩样破坏前、后各能量指标进行计算,采用能量耗散分析的方法探讨不同加载路径下砂岩岩样存在多种破坏模式的原因。研究结果表明,在单轴压缩试验中,砂岩岩样的破坏模式以劈裂破坏为主,单剪破坏为辅。常规三轴压缩和峰后卸围压试验,围压较低时砂岩岩样多发生单一剪切或劈裂破坏;围压较高时,砂岩岩样多发生二者组合破坏。三轴峰前卸围压,围压相对较低时,砂岩岩样多发生剪切与横向剪切组合破坏;围压相对较高时,砂岩岩样多发生劈裂与剪切组合破坏。随着围压的增加,常规三轴压缩试验中,砂岩岩样更易发生剪切破坏;而对于三轴峰前、峰后卸围压试验,砂岩岩样发生剪切破坏呈先增加后降低的趋势。不同加载路径下岩样破坏模式与岩样破坏前、后能量指标数值存在一定的对应关系,各能量指标数值较小时,岩样多发生单一破坏模式,且破坏后形成的块体相对较完整;各能量指标数值较大时,岩样多发生组合破坏模式,且破坏后形成的块体相对较破碎。  相似文献   

16.
锦屏二级水电站大理岩不同应力路径下加卸载试验研究   总被引:4,自引:2,他引:2  
 针对锦屏二级水电站引水隧洞赋存于高地应力环境的特点,对隧洞内的大理岩开展常规三轴压缩试验及峰前、峰后卸围压试验,通过试验数据对比分析,研究大理岩的强度变形特征及破裂机制。主要研究成果:(1) 大理岩峰值强度与实时围压关系密切,应力路径不同、实时围压相同时,峰值强度相同。(2) 围压效应明显,峰值强度随初始围压增加而增加;相比三轴加载试验,峰前卸围压试验峰值强度降低约19.5%,峰后卸围压试验规律不明显,而峰后卸围压试验达到峰值强度时的围压值约占初始围压值的 97.2%,峰前卸围压试验结果较离散。(3) 相比三轴加载试验,峰前卸围压试验c值降低约27.5%, 值提高约22.6%,而与此相反,峰后卸围压试验c值增加约13.7%, 值降低约6.5%,表明大理岩抗破裂的主控因素峰前卸围压试验由摩擦力控制,峰后卸围压试验由黏聚力控制。(4) 峰后卸围压试验自卸荷点开始出现明显的应变平台,表现为理想塑性变形。(5) 峰前卸围压试验的体积应变自卸荷点开始出现明显的转折点。(6) 三轴压缩试验和峰后卸围压试验,大理岩的破坏模式主要为单一剪切破坏,随着围压增加,剪切破裂面端口的粗糙程度降低;峰前卸围压试验的破坏模式为:低围压时的劈裂破坏~中等围压时的“X”型共轭剪切破坏~高围压时的单一剪切破坏。这些研究结论揭示了锦屏大理岩加、卸载应力路径下的力学特性差异,可为西部深埋引水隧洞的开挖、支护设计及稳定性分析提供理论参考。  相似文献   

17.
基坑开挖过程中,基坑坑侧各区域土体受到不同程度的卸荷或堆载作用,从而呈现出复杂的应力路径。因此,开展了常规三轴固结不排水剪切试验、K0固结不排水剪切试验、K0固结侧向卸荷试验和K0固结侧向卸荷轴向加荷试验等不同的应力路径试验,来研究基坑开挖前后基坑坑侧土体的不同应力路径变化情况,比较分析了各应力路径条件下土体的抗剪强度、应力应变的变化情况,归纳了基坑开挖前后复杂应力路径条件下土体的应力变形及强度特征。研究表明,在不同的应力路径条件下,土体所对应的应力变形及强度参数,具有明显的差异性;软黏土在不同的侧向卸荷应力路径情况下,应力应变曲线均呈现应变软化型,且侧向卸荷对土体强度影响较大,坑侧堆载引起的轴向加荷对土体强度变化也有一定影响。  相似文献   

18.
层状大理岩卸荷力学特性试验研究   总被引:6,自引:4,他引:6  
 以锦屏一级水电站地下厂房实际应力环境为基础,利用MTS815 Flex Test GT岩石力学试验系统,对该厂房区域典型层状大理岩开展常规三轴加、卸荷破坏试验研究。研究成果表明:平行层理面压缩时,卸荷试验得到的抗剪断、抗剪强度参数较加载试验得到的c,j 值低,残余内摩擦角jr值却较高;相同卸荷条件下,垂直层理面压缩得到的抗剪断、抗剪强度参数较平行层理面压缩得到的c,j 高,jr值却较低;卸荷条件下岩样的破坏是其向卸荷方向的强烈扩容所致,峰值强度后继续卸荷对岩石峰后承载力有显著的弱化作用;试验得到的各组弹性模量大致随围压增加而增加,而峰值应力对应的变形模量则反之,单个岩样在卸荷试验中,变形模量大致随围压卸荷而降低,垂直层理面压缩得到的变形模量较平行层理面压缩的高20%~51%,侧胀系数m 的变化规律则反之,前者较后者的低3%~12%;在相同卸荷条件下,平行层理面压缩时,岩石更易发生破坏,而垂直层理面压缩时,大理岩的脆性变形特征更显著。这些结论揭示了层状大理岩的卸荷力学特性,对解决工程实际问题有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号