首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
 采用声波、声发射一体化装置,研究单轴压缩下花岗岩波速与声发射演化规律,通过宏细观方法确定各应力门槛值,研究裂纹扩展不同阶段声发射演化及波传播规律。结果表明:细观裂纹的演化与宏观变形直接对应,由于微裂纹主要沿轴向扩展,导致轴向刚度对裂纹起裂及贯通的敏感度弱于非线性增长的侧向变形,瞬时泊松比曲线斜率变化点与应力门槛值对应,声发射测试确定的起裂应力比宏观应变法偏小,但反映了微裂纹的初始萌生;采用实测波速变化分析声发射震源的时空及幅值演化分布,较好地描绘了裂纹的扩展过程,由于不同阶段声发射信号的幅值及能量存在差异,导致声发射特征参数演化规律差异较大(尤其在损伤应力之后),AE能量在破坏前呈突发性增长,可作为灾害性破坏的前兆;加载初始阶段,由于微裂隙的闭合,波速及波幅均随应力逐渐增大,但增加速率逐渐下降,侧向波速在闭合应力附近基本达到峰值,此后一定阶段基本保持不变,但其他方向波速则继续增大,随着波传播方向与径向夹角的增大,波速增加幅度及波速下降点对应的应力(损伤应力前、后)逐渐增大,峰值应力附近对应波速下降幅度减小;波速受损伤演化的影响要滞后于声发射事件。  相似文献   

2.
 为了全面、客观地描述单轴压缩条件下砂岩损伤破坏过程和状态,提出利用电阻率和声发射技术对砂岩岩样单轴压缩全过程进行联合测试的试验方法。针对30个砂岩岩样单轴压缩全过程中的电阻率和声发射响应特征进行试验研究。研究表明,电阻率和声发射的响应信息有很强的规律性和互补性:在压密阶段、弹性变形阶段和塑性变形阶段,电阻率信息对岩样内部裂隙萌生和发展活动的响应更为敏感,而声发射信号较微弱;岩样破裂瞬间,电阻率和声发射都突然升高,二者相比,声发射的同步性更好,敏感程度更高;岩样破坏完成后,电阻率仍有不同程度的变化,最终趋于稳定,而声发射又恢复到较低的水平。同时,推导基于电阻率表征的岩样损伤变量的解析表达,并根据其与声发射表征的损伤变量之间的互补性,定义一综合损伤变量,得到典型岩样的损伤演化方程,提出岩样损伤破坏状态的判别标准和破坏前兆特征。通过理论与实际试验全应力–应变曲线的对比发现,综合损伤变量能够更全面、客观地反映和描述受载岩样的损伤演化过程。  相似文献   

3.
花岗岩破裂全过程的声发射特性研究   总被引:3,自引:7,他引:3  
声发射是许多材料发生脆性破坏(包括其微裂纹的初始、扩展)过程中伴随的很普遍的现象。应用两套声发射系统,研究在单轴压缩荷载条件下10个花岗岩样(70mm×70mm×150mm)破裂过程中,随加载时间、应力变化其声发射活动的特性;通过应用单纯形算法对声发射事件定位,分析岩样破裂过程中其内部微裂纹初始、扩展过程的空间演化模式。试验结果表明:(1)在整个岩石破裂过程中,声发射活动随加载时间、应力变化表现出不同的特征;(2)在初始加载阶段直至初始裂纹形成之前,其声发射活动不是很明显;一旦岩样出现初始裂纹,在其加载时间点和相应的应力点处声发射事件明显增多;(3)在裂纹初始形成之后到微裂纹扩展之前,声发射活动处于一段平静期,裂纹稳定扩展直至岩石完全破坏,声发射活动变得异常活跃,特别在微裂纹扩展的非稳定阶段,声发射事件随加载时间及应力变化率非常显著。对于岩样内部初始裂纹形成之后的“平静区”而言,初始裂纹形成之后,并非裂纹随着荷载或者应变的变化而直接扩展,而需要蓄积一定的加载能量,在能量蓄积一定程度之后再进行扩展,即岩石初始破裂之后,其内部应力场需要寻求新的平衡,新应力平衡达到之后裂纹才开始进一步扩展;同样,当岩石完全破坏之后,应力也没有立即完全释放,亦是达到新的应力平衡之后,才完全失去其强度。声发射事件定位结果直观的反映岩样内部裂纹扩展空间位置、扩展方向以及裂纹扩展的空间曲面形态,这对于深入研究岩石破裂失稳机制是十分有意义的。  相似文献   

4.
为研究岩石受压及破坏失稳过程中的声发射特性,作者利用改进的岩石声发射参数动态测试系统,对广西某矿石灰岩作了岩石的单轴压缩试验,检测了岩样从加载直至破坏过程中的声发射活动,表明内部微裂纹的形成与原有裂纹的扩展是岩石加载过程中声发射活动的主要原因。  相似文献   

5.
单轴压缩煤岩损伤演化及声发射特性研究   总被引:12,自引:4,他引:8  
 为建立声发射参数与岩石(煤岩)力学破坏机制的关系,更好地了解受载煤岩体的损伤演化规律,进一步揭示煤岩动力灾害演化过程及灾害时间效应产生机制,利用MTS815岩石力学测试电液伺服试验系统和8CHS PCI–2声发射检测系统,对单轴压缩煤岩的损伤演化及声发射特性进行试验研究,分析单轴压缩煤岩的声发射特性,提出基于“归一化”累积声发射振铃计数的损伤变量,建立基于声发射特性的单轴压缩煤岩损伤模型,得出煤岩的损伤演化曲线和方程。研究表明,声发射信息反映煤岩内部的损伤破坏情况,与其内部原生裂隙的压密及新裂隙的产生、扩展、贯通等演化过程密切相关,煤岩的声发射特征能较好地描述其变形和损伤演化特性。基于声发射特性的单轴压缩煤岩损伤模型是合理的。单轴压缩煤岩损伤演化过程可分为3个阶段:初始损伤阶段、损伤稳定演化和发展阶段、损伤加速发展阶段。煤岩由变形至破坏可视为一逐渐发展过程:由变形、损伤的萌生和演化,直至出现宏观裂纹,再由裂纹扩展到破坏的全过程。  相似文献   

6.
单轴受压岩石破坏全过程声发射特征研究   总被引:65,自引:28,他引:65  
在刚性试验机上,对单轴受压岩石破坏全过程进行声发射试验,得到了岩石破坏全过程力学特征和声发射特征,包括岩石应力-应变曲线、声发射事件数等,研究了声发射事件数(AE数)、事件率与应力、时间之间的关系。研究表明:岩石在一次性加载过程中,不是所有的岩石都具有典型的Kaiser效应的声发射特征点:在弹性阶段的初期和后期,随着应力水平的增加岩石声发射显著增加,特别在弹塑性高应力阶段,岩石声发射增长迅速;岩样在试验接近峰值强度时单位时间内的应力增长速度减小,声发射事件率出现明显下降,即出现相对平静阶段;声发射事件率在不同应力水平变化很大,峰值强度后的声发射现象仍然明显,其声发射特征随岩样破坏形式的不同而不同。  相似文献   

7.
煤岩体破裂过程中声发射行为及时空演化机制   总被引:3,自引:2,他引:3  
 利用MTS 815试验机和声发射监测系统对单体岩石、单体煤和煤岩组合体进行单轴试验下的声发射测试,找出三者之间破坏机制的差异,从而为现场微震监测提供指导。试验结果表明,随着荷载的增加,单体岩石、单体煤及煤岩组合体的累积声发射数都增加,并且煤及煤岩组合体单位体积的声发射数要比岩石的声发射数高1个数量级,这主要是煤的强度较低且内部结构松软破碎所致。通过区分不同时段的声发射特征,得出三者破坏存在本质差异:随着荷载的增加,岩石的时段声发射数逐渐增多,煤的时段声发射数逐渐减少,而煤岩组合体的时段声发射先逐渐增加后逐渐减少。岩石的抗拉强度最高,煤的最低,而煤岩组合体的位于单体岩石和煤之间。对于煤岩组合体,岩石内部的声发射数约占声发射总数的10%~30%,煤体占70%~90%;并且声发射的空间分布主要受煤体结构及原生裂隙的影响。  相似文献   

8.
单轴加卸载扰动下石灰岩声发射特性研究   总被引:2,自引:0,他引:2  
 以取自拟建大连地铁二号线的石灰岩试件为研究对象,用单轴循环加卸载扰动来模拟交通荷载,进行该加载过程的声发射特性研究,并利用RFPA2D模拟岩石加卸载循环下的破坏过程。试验结果证实该种石灰岩存在Kaiser效应,也证实加卸载下的Felicity效应的存在。将加卸载理论应用于岩石的声发射前兆分析中,将加卸载响应比Y值达到(接近)1作为此种岩石失稳破坏前兆特征;石灰岩破裂过程中声发射能量加速释放现象明显。数值模拟结果能看到明显的Kaiser效应以及各步对应的声发射现象,将模拟结果与试验结果进行对比发现,岩石均质度系数m=5时,二者最为接近。所得结果可望为地下工程的施工安全研究提供理论依据。  相似文献   

9.
 为了建立声发射参数与盐岩力学破坏机制的关系,进一步揭示盐岩在不同应变率条件下的损伤演化规律,利用声发射技术对加载应变率分别为2×10-3,2×10-4,2×10-5 s-1下的盐岩损伤演化及声发射参数特征进行试验研究。试验发现:(1) 3种应变率加载条件下盐岩的应力–应变曲线变化趋势接近。随着加载应变率的增加,盐岩弹性极限强度略有增加,峰值强度及其对应的应变值略有变化,达到峰值强度所需的时间呈线性减少。(2) 加载速率越慢,岩石破碎越松散,产生的裂纹越多,出现的累计声发射信号数越多。(3) 加载速率越快,声发射频率越高,脆性破坏特征越明显。声发射信号频率变化幅度反映了盐岩在不同应变率条件下裂纹的生成速度和损伤演化过程,而声发射信号累计振铃数则较好地反映盐岩达到峰值强度前应力–应变曲线关系。盐岩自身透光性的变化在一定程度上反映出损伤分布区域和损伤程度。建立基于声发射信号累计振铃数的盐岩损伤演化方程,较好地反映低应变率盐岩损伤演化过程。  相似文献   

10.
基于三轴压缩声发射试验的岩石损伤特征研究   总被引:2,自引:1,他引:2  
 利用MTS815岩石伺服试验系统和AE21C声发射监测仪,对灰岩进行三轴压缩声发射试验,利用声发射参数,分析三轴压缩条件下岩石的损伤演化特征。试验结果表明:(1) 相同试验条件下,检波器置于三轴室内时的声发射振铃计数和能量的最大值分别比置于室外时高27%和32%,表明,声发射检波器置于三轴室内能够接收到更全面、真实的声发射信号。(2) 围压使岩石压密阶段声发射活动降低,同时声发射振铃计数最大值稍滞后于岩样宏观破坏时间,说明围压提高了岩石的剪切强度和峰后承载能力。(3) 建立基于声发射累计振铃计数的岩石三轴压缩损伤演化模型,岩石的损伤演化过程可划分为初始损伤阶段、损伤稳定发展阶段、损伤加速发展阶段和损伤破坏阶段。初始损伤阶段,声发射参数较小;损伤稳定发展阶段,声发射活动明显活跃,振铃计数和能量逐渐增加;损伤加速发展阶段,声发射活动异常活跃,宏观破坏后不久声发射振铃计数和能量达到峰值;损伤破坏阶段,岩石仍具有相当的承载能力,在破坏过程中仍有声发射活动出现。  相似文献   

11.
 对单轴压缩条件下一种红砂岩试件变形场演化过程中声发射特征进行研究。以数字散斑相关方法进行试件加载全过程的变形场演化观测,利用声发射系统采集试件加载全过程的声发射信号,对岩石变形演化过程中的变形局部化演化、变形局部化带拉伸以及变形局部化带错动对应的声发射特征进行研究,研究结果表明:(1) 由加载曲线与声发射振铃计数、声发射能量演化对应关系可知,应力突降时声发射振铃计数和声发射能量出现激增,但振铃计数激增和声发射能量激增,应力不一定突降;(2) 加载应力与声发射振铃累计计数在演化趋势上具有较好的对应关系,但声发射振铃累计计数增幅与对应的应力降低量值无关;(3) 声发射峰前“平静期”并不代表岩石变形场演化处于平静阶段,此阶段变形局部化带的宽度、长度以及变形量值在不断增加;(4) 变形局部化带的宽度、长度以及变形量值的演化对声发射振铃计数及声发射能量影响很小,变形局部化带的拉伸速率及变形局部化带的滑动速率变化对声发射振铃计数和声发射能量影响较大,其中变形局部化带滑动影响最大。  相似文献   

12.
 通过对花岗岩在不同围压下循环加卸载声发射(AE)试验,得到岩石加卸载损伤破坏过程中高、低频通道中AE累计振铃计数、岩石应力与时间的关系。基于此,研究岩石AE的不可逆性特征。同时运用快速傅里叶变换FFT逆变换对Kaiser点AE信号进行消噪,并通过FFT分析消噪后信号的频谱特征,探求岩石主破裂前特征信息。研究结果表明:(1) 两通道中接收到的AE振铃计数整体变化趋势基本相同,所揭示的Kaiser效应和Felicity效应规律基本一致;两通道中AE振铃计数特征主要区别在于数量不同;(2) Kaiser点主频分布在46.39~70.80与151.37~166.99 kHz范围内。岩石主破裂前,随轴向应力水平增加,低频通道中Kaiser点主频整体变化趋势由较低频向较高频转移,高频通道中由较高频向较低频转移;(3) 花岗岩Kaiser效应应力上限值为极限强度的65%左右。Kaiser点的主频特征及变化规律,可为岩石的损伤破坏评价提供依据。  相似文献   

13.
 采用岩石声波、声发射一体化监测装置,系统地研究三轴多级循环荷载作用下盐岩超声波波速与声发射变化特征。结果表明:(1) 岩石的超声波波速和声发射活动与应力状态呈现出良好的一致性。加载阶段,超声波波速上升,声发射活跃,卸载阶段,超声波波速下降,声发射平静,应力级数越高,这一特征越显著。(2) 盐岩的声波、声发射特征与试验围压应力密切相关。围压水平越低,应力循环试验中岩石波速变化率越大,声发射事件数量越多;围压水平越高,岩石超声波波速变化率越小,声发射事件数量越少。五级应力荷载试验中,围压条件为5,10,15,20 MPa时盐岩的声发射事件数量分别为1 026,703,361和206个,显示了“围压致密效应”。(3) 分别应用卸载模量、裂隙密度和Felicity比表征盐岩的损伤演化。结论认为:盐岩的裂隙密度和Felicity比变化与岩体承载破坏特征较为一致,可以较好地反映盐岩的损伤破裂过程,而利用卸载模量表征盐岩损伤误差较大,这是由于盐岩特殊的黏塑性变形特征造成的。  相似文献   

14.
 利用TAW–2000 kN三轴试验系统和SH–II声发射系统,对循环载荷下煤样能量转化规律和声发射特征开展研究。试验结果表明:通过煤样破坏形态和循环曲线规律,c05破坏瞬时突然崩裂,c06曲线破坏前出现明显塑性跳跃,c08局部失稳累计成扰动破坏,破坏时曲线不断波动。从能量转化角度分析失稳前兆,一次初判通过耗散能加速增长,弹性能达到峰值及弹性能量指数达到极大值,二次终判通过弹性能不变,塑性能增加。随着循环载荷的增加,耗散能整体呈现上升趋势。通过阻尼比评价煤样抗震性顺序为c06>c08>c05,结论与单轴抗压强度一致。以径向弹性能和体弹性能均呈现降低趋势和径向塑性能和体塑性能均呈现升高趋势作为失稳判据有一定参考。加载阶段声发射计数峰值呈现倒“梯形”,卸载阶段声发射计数峰值呈现递减趋势。循环载荷加载前期Kaiser效应明显,后期Felicity效应明显。通过加载阶段和卸载阶段声发射特征参数变化规律可知,塑性能可以利用加载阶段声发射计数和能量表征,耗散能可以利用卸载阶段声发射计数表征;通过循环加卸载声发射特征参数变化规律,声发射累计计数与塑性能呈现一致规律,耗散能和声发射能量规律性一致。通过声发射能量突升和声发射幅值的突降来预判煤岩的失稳。  相似文献   

15.
 利用MTS 815岩石力学测试系统、声发射系统、环境扫描电镜开展石膏质岩循环荷载作用下的疲劳试验,探讨循环荷载条件对其疲劳损伤特性的影响。结果表明:石膏质岩循环荷载作用下的疲劳损伤特征明显,塑性特性显著。其疲劳试验的应力–应变全过程曲线具有如下形状特征:加载曲线可分为“近线性”的弹性特征段和“呈压扁状”的塑性特征段,塑性特征段滞后效应明显,卸载曲线呈现近线性特征。循环荷载条件对石膏质岩疲劳损伤特性影响显著,疲劳试验过程的声发射信息演化规律及微观结构变化特征能够较好地揭示其疲劳损伤演化过程及宏观破裂特征:循环应力水平高、上限应力大、加载频率低,疲劳试验的应力–应变全过程曲线越饱满疏松、加卸载的滞回环面积越大,声发射信息越强烈而集中、声发射率指标越高,试样的疲劳损伤速率快,每次循环产生的塑性应变量大,微观结构越破碎,试样的疲劳寿命越短。  相似文献   

16.
 对含原生隐裂隙的玄武岩试样开展单轴压缩试验,并同步采集岩样变形破坏过程中的声发射信息,结合试样的结构特征对试验结果进行系统分析,研究结果表明:(1) 隐裂隙影响试样的压缩破坏特征,试样受原生隐裂隙的切割,其压缩变形破坏模式为隐裂隙尖端裂纹的扩展、裂隙面之间的剪切滑移以及由裂隙面剪切变形而引起张拉破裂等构成的剪切–张拉型变形破坏模式。(2) 受原生隐裂隙的影响,试样在变形破坏阶段,应力–应变曲线呈“锯齿”状;(3) 含隐裂隙的玄武岩天然平均单轴抗压强度为106 MPa,低于同场地完整的隐晶质玄武岩;且试样中隐裂隙越发育,其强度越低;(4) 加卸载过程中,不同类型的变形所引发的声发射信号特征不一样,永久应变所引发的声发射信号幅值比弹性应变所引发的高;(5) 试样在破坏之前,内部破裂较少,声发射数保持平稳,进入变形破坏阶段后,声发射数激增;试样中的隐裂隙对声发射能量具有吸收效应,而当隐裂隙闭合时,吸收效果减弱。  相似文献   

17.
为研究岩石断裂过程区孕育规律及声发射特征,采用直裂缝圆盘砂岩试样在GCTS岩石测试系统上进行劈裂加载试验,借助数字图像相关方法(digital image correlation method,DICM)和声发射(acoustic emission,AE)仪进行实时监测,根据裂尖附近测线水平位移随载荷变化趋势和声发射定...  相似文献   

18.
基于声发射定位的岩石裂纹动态演化过程研究   总被引:17,自引:10,他引:17  
应用声发射及其定位技术,在单轴压缩载荷作用下,应用盖格尔定位算法,采用试验方法研究包括含不同预制裂纹的花岗岩岩样破裂失稳过程中其内部微裂纹孕育、萌生、扩展、成核和贯通的三维空间演化模式。试验结果表明,声发射定位能够反映岩石裂纹动态演化过程,声发射事件的产生主要是由于裂纹扩展产生的,并随应力-应变变化表现出不同的特征:在初始加载阶段至初始裂纹出现之前,其声发射活动不很明显;一旦岩样出现初始裂纹,在相应应力点声发射事件明显增多;裂纹稳定扩展至岩石完全破坏之前,声发射总数应变曲线与应力-应变曲线平行;在微裂纹扩展的非稳定阶段至岩石破坏瞬间,声发射活动变得异常活跃,声发射事件变化率最大。在完整岩样声发射事件定位结果中,出现声发射定位事件的空白区,宏观裂纹的贯通恰在声发射事件的空白区之内,借此可以实现对岩石裂纹贯通位置预测;声发射定位结果也是岩样内部应力场演化过程的宏观表现,可直观地反映岩样内部裂纹扩展空间位置、扩展方向以及裂纹扩展的空间曲面形态,这对于深入研究岩石破裂失稳机制是十分有意义的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号