首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radio frequency identification (RFID) technology has recently become an integral part of a wide range of applications. One of the challenges in RFID systems is the tag anti‐collision issue, for which several anti‐collision tag identification protocols have been proposed. This paper proposes a novel slotted ALOHA‐based RFID tag anti‐collision algorithm which can be employed for tag identification. The main idea of this algorithm is to use the information available in collision slots, called collided data, to identify tags uniquely. For this purpose, the collision slots that include only two tags are selected. Then, the non‐conflict bits in these slots are used to possibly identifying the tags. Because in the proposed algorithm readers use both single slots and also the collision slots for tag identification, the performance is increased significantly compared with other protocols. Results of the study indicate that in the proposed algorithm, the optimal frame size for an individual tag number is equal to the half of tags number and the efficiency of the proposed protocol is improved to about 73%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In the RFID system, a reader recognizes tags through communications over a shared wireless channel. When multiple tags transmit their IDs at the same time, the tag-to-reader signals lead to collision. Tag collision arbitration for passive RFID tags is significant for fast identification since collisions disturb the reader's identification process. This paper presents an Adaptive Binary Splitting (ABS) protocol which is an improvement on the binary tree protocol. To reduce collisions and identify tags efficiently, ABS uses information which is obtained from the last processes of tag identification. Our performance evaluation shows that ABS outperforms other tree based tag anti-collision protocols. This work was supported by Korea Research Foundation Grant (KRF-2005-041-D00680).  相似文献   

3.
Arbitration of tag collision is a significant issue for fast tag identification in RFID systems. A good tag anti‐collision algorithm can reduce collisions and increase the efficiency of tag identification. EPCglobal Generation‐2 (Gen2) for passive RFID systems uses probabilistic slotted ALOHA with a Q algorithm, which is a kind of dynamic framed slotted ALOHA (DFSA), as the tag anti‐collision algorithm. In this paper, we analyze the performance of the Q algorithm used in Gen2, and analyze the methods for estimating the number of slots and tags for DFSA. To increase the efficiency of tag identification, we propose new tag anti‐collision algorithms, namely, Chebyshev's inequality, fixed adjustable framed Q, adaptive adjustable framed Q, and hybrid Q. The simulation results show that all the proposed algorithms outperform the conventional Q algorithm used in Gen2. Of all the proposed algorithms, AAFQ provides the best performance in terms of identification time and collision ratio and maximizes throughput and system efficiency. However, there is a tradeoff of complexity and performance between the CHI and AAFQ algorithms.  相似文献   

4.
In this work, we propose a highly efficient binary tree‐based anti‐collision algorithm for radio frequency identification (RFID) tag identification. The proposed binary splitting modified dynamic tree (BS‐MDT) algorithm employs a binary splitting tree to achieve accurate tag estimation and a modified dynamic tree algorithm for rapid tag identification. We mathematically evaluate the performance of the BS‐MDT algorithm in terms of the system efficiency and the time system efficiency based on the ISO/IEC 18000‐6 Type B standard. The derived mathematical model is validated using computer simulations. Numerical results show that the proposed BS‐MDT algorithm can provide the system efficiency of 46% and time system efficiency of 74%, outperforming all other well‐performed algorithms.  相似文献   

5.
Since radio frequency identification (RFID) technology has become increasingly common in numerous applications, including large-scale supply chain management, improving the efficiency of RFID tag identification is an important task. In practical settings, the identification of RFID tags often occurs in a dynamic environment, in which tags move through a specific interrogation range. However, the literature contains few studies on the design of efficient identification protocols in dynamic environments. This study proposes a novel tag identification protocol that is particularly efficient in dynamic environments. the proposed protocol involves two anti-collision techniques: adaptive n-Resolution (AnR) and k-Collision Arbitration (kCA). These two techniques significantly improve the tag identification delay and communication overhead. This improvement is primarily due to the use of a newly designed challenge-response bit sequence mechanism and the information obtained from the previous tag identification procedure. As a result, AnR requires only a constant number of interrogation times regardless of the number of target tags, while kCA further improves the efficiency of tag identification with \(k\) -splitting collision arbitration. Rigorous analysis and simulation experiments show that this tag identification protocol significantly outperforms related methods (by at least 48.85 % identification delay and 23.87 % communication overhead can).  相似文献   

6.
Radio frequency identification (RFID) systems are very effective for identifying objects. Existing published works focus on designing efficient collision resolution protocols for the tag identification problem in RFID systems with passive RFID tags. However, advances in low‐cost and low‐power sensing technologies will make active RFID tags more popular and affordable in the near future. In multiple object identification systems with active tags, the tags are designed for extremely low‐cost large‐scale applications such that battery replacement is not feasible. This imposes a critical energy‐constraint on the communication protocols used in these systems. In this paper, we analyze energy consumption and identification times for several protocols. The objective is to decrease energy consumption of tags by reducing both the total identification time and the total active time. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper focuses on two interesting radio‐frequency identification (RFID) cryptographic protocols: the server‐less RFID authentication protocol that allows readers to authenticate tags without the help of any online backend servers, and the RFID searching protocol in which the verifier explicitly specifies the target tag to be searched and authenticated. These two kinds of RFID protocols play important roles in many RFID applications; however, the existing protocols either had security weaknesses or exhibited poor efficiency. This paper shows the weaknesses, and then proposes our server‐less RFID authentication protocol and RFID searching protocol. The proposed protocols greatly enhance the security using one more hashing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Radio Frequency Identification (RFID) becomes increasingly widespread in various applications. However, data collision is one of the most concerns in dense active RFID systems. Data collision will cause serious data loss, slow identification speed and high energy consumption. In this paper, data collision problem is addressed and two communication protocols are presented based on the dual‐reader structure. One is the master–slave dual‐reader (MSDR) protocol, and the other is called the dual‐reader DCMA (DRDCMA) protocol. Both protocols are implemented in the hardware platform and their performances are compared with other conventional anti‐collision protocols. Experimental results show that our proposed protocols outperform the conventional ones in terms of identification rate, identification speed and energy consumption. Compared to the Single‐reader (SR) protocol, the proposed MSDR protocol can improve the identification rate by 82.9%, reduce the access latency and energy consumption by 47.0%. Besides, the proposed DRDCMA protocol can reduce the access latency and energy consumption by 69.1 and 78.3%, respectively, in comparison with DCMA. Moreover, MSDR has the fastest identification speed and it can improve nearly 100% over SR when the communication load is large enough. DRDCMA presents the highest identification rate with nearly no data loss, while the identification rate in MSDR is 40.6% and decreases dramatically with the increment in communication load. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
With the introduction of the new generation RFID technology, EPCglobal Class‐1 Generation‐2, there is considerable interest in improving the performance of the framed slotted Aloha (FSA)‐based tag collision arbitration protocol. We suggest a novel time‐optimal anti‐collision algorithm for the FSA protocol. Our performance evaluation demonstrates that our algorithm outperforms other tag collision arbitration schemes.  相似文献   

10.
Instant collision resolution for tag identification in RFID networks   总被引:3,自引:0,他引:3  
Maurizio A.  Francesca  Francesca   《Ad hoc Networks》2007,5(8):1220-1232
In this paper, we approach the problem of identifying a set of objects in an RFID network. We propose a modified version of Slotted Aloha protocol to reduce the number of transmission collisions. All tags select a slot to transmit their ID by generating a random number. If there is a collision in a slot, the reader broadcasts the next identification request only to tags which collided in that slot. Besides, we present an extensive comparative evaluation of collision resolution protocols for tag identification problem in RFID networks. After a quick survey of the best performing RFID tag identification protocols, both deterministic and probabilistic, we present the outcome of intensive simulation experiments set up to evaluate several metrics, such as the total delay of identification process and the bit complexity of reader and tags. The last metric is strictly related to energy constraints required by an RFID system. The experiments point out that our protocol outperform all the other protocols in most cases, and matches them in the others.  相似文献   

11.
Location awareness in an indoor environment and wireless access to Internet applications are major research areas towards the overwhelming success of wireless and mobile communications. However, the unpredictable indoor radio propagation and handover latency due to node mobility are the main challenging issues that need to be addressed. For tackling efficiently both problems of indoor localization and handover management, we propose combining key benefits of two outstanding wireless technologies, i.e. radio frequency identification (RFID) and a wireless local area network (WLAN) infrastructure. WLANs, such as IEEE 802.11 (WiFi), are now very common in many indoor environments for providing wireless communication among WiFi-enabled devices by accessing an Access Point (infrastructure mode) or through peer to peer connections (ad hoc mode). However, the small cell size of the Access Points (APs) in a WiFi-based network drives the need for frequent handovers leading to increased latency. RFID is an emerging technology consisting of two basic components, a tag and a reader, and its main purpose is the automatic identification of tagged objects by a reader. However, in the presence of multiple readers, RFID suffers from the so-called reader collision problem, mainly due to the inability for direct communication among them. In this paper, we propose a hybrid RFID and WLAN system; the RFID technology is employed for collecting information that is used for both localization and handover management within the WLAN, whereas the WLAN itself is utilized for controlling and coordinating the RFID reading process. In our system architecture, tag IDs of a RFID tag deployment are correlated with both location and topology information in order to determine the position and predict the next subnetwork of a Mobile Node (MN) with a reader attached to its mobile device. The role of the WLAN is to coordinate the readers when accessing the RFID channel for retrieving tags?? IDs, hence compensating the persisting RFID collision problem among multiple readers. Numerical results based on extensive simulations validate the efficiency of the proposed hybrid system in providing accurate and time efficient localization and reducing the IP handover latency.  相似文献   

12.
RFID technology acts as a bridge to connect the physical world with the digital space, and RFID system is pervading our daily life in the last few years. The energy consumed by the reader and a tag in resolving the collisions caused by multiple tags is a key issue that affects life time of mobile reader and active tags, as well as the identification accuracy of passive tags. In this paper, the energy consumed by the reader and a tag in resolving the tag collision is examined for the commonly used RFID tag collision resolution protocols, including the frame slotted ALOHA based and the binary query tree based protocols. Numeric evaluation is also performed and the result verifies that regarding to energy consumption, the dynamic frame slotted ALOHA protocol for the Class-1 RFID system performs best among the frame slotted ALOHA protocols, and the modified binary query tree protocol also performs better than the standard binary query tree protocols.  相似文献   

13.
The technology of anti-collision is a key point in radio frequency identification (RFID) system. To avoid data collision, there are two approaches: ALOHA based algorithm and binary tree (BT) based algorithm. However, these cannot solve the collision problem completely, especially when the tag quantity is big and the tag ID is long. In this article, we present a multi-branch query tree (MBQT) protocol based on balanced incomplete block design (BIBD) code, and use 16-bit vectors derived from the BIBD as query prefix symbols of RFID reader. Compared with the conventional anti-collision algorithm, the theoretic analysis and simulation show that the proposed protocol improves the identification efficiency.  相似文献   

14.
A novel anti-collision algorithm in RFID wireless network is proposed.As it is put forward on the basis of collision tree(CT)and improved collision tree(lCT) anti-collision protocols,we call it adaptive collision tree protocol(ACT).The main novelty of this paper is that the AD strategy is introduced and used in ACT to decrease collisions and improve the tag system throughput.AD strategy means that query strings will divide into two or four branches adaptively according to the label quantity.This scheme can decrease both depth of query and collision timeslots,and avoid producing too much idle timeslots at the same time.Both theoretical analysis and simulation results indicate that the novel proposed anticollision protocol ACT outperforms the previous CT and ICT protocols in term of time complexity,system throughput,and communication complexity.  相似文献   

15.
A novel estimation scheme that combines Bayesian and lower bound estimating radio frequency identification tag population size is proposed. The developed methodology is based on the fusion between the Bayesian and lower bound estimating techniques. It turns out that the fusion rule is built up thanks to an existing linear relationship between the cited techniques. Simulation results show that the developed technique significantly improves the accuracy of the estimating tag quantity and presents less estimation error. Also, the resulting advanced dynamic framed slotted ALOHA protocol considerably improves the performance and efficiency of the radio frequency identification anti‐collision compared with the most recent protocols using others estimating methods.  相似文献   

16.
RFID系统中有限的标签芯片资源,导致数据与信息的安全成为RFID系统的重要问题之一,散列函数的单向性为RFID的识别和认证提供了一种既可靠又有效的途径.在分析了现有几种典型散列认证协议的基础上,提出了一种新的基于散列函数的安全认证协议.本协议旨在解决手持式、无线连接的RFID阅读器与标签、服务器间的识别,利用散列函数实现服务器、阅读器以及电子标签三者之间的相互认证.经过安全性与性能的分析,新协议在采用较小的存储空间和较低的运算开销的情况下,可抵抗已知的大多数攻击,有效地保证了RFID系统中数据和隐私的安全,实现了终端与服务器间的双向认证和匿名认证,非常适合于在大型分布式系统中使用.  相似文献   

17.
Referring to most media access control (MAC) protocols in low rate personal area networks (LR‐WPANs), there is no hidden node collision avoidance mechanism utilized. Quantitative analysis in this paper based on the IEEE 802.15.4 specification shows a high probability of the continuous hidden node collisions (CHNCs), which seriously decreases network throughput. Based on this observation, we propose a cost‐efficient recovery mechanism to achieve fast self‐healing when LR‐WPANs suffer CHNCs, while introducing no overhead when there are no collisions. Simulation results demonstrate the efficiency of our proposed protocol in terms of network throughput and power saving. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
在许多射频识别(RFID)应用中,经常需要在多个标签中确定某个特定标签是否存在。在这种环境下,标签查询协议必不可少。然而,已有的协议要么存在安全漏洞,要么查询效率低下。利用Hash函数和时间戳,提出一个无后台服务器的RFID标签查询协议。GNY逻辑被用于证明新协议的正确性。分析显示提出的协议可以高效的实现特定标签的查询,且能够抵抗一些主要攻击,实现对标签隐私的保护。  相似文献   

19.
Energy-Aware Tag Anticollision Protocols for RFID Systems   总被引:1,自引:0,他引:1  
Energy consumption of portable RFID readers is becoming an important issue as applications of RFID systems pervade many aspects of our lives. Surprisingly, however, these systems are not energy-aware with the focus till date being on reducing the time to read all tags by the reader. In this work, we consider the problem of tag arbitration in RFID systems with the aim of designing energy-aware anticollision protocols. We explore the effectiveness of using multiple time slots per node of a binary search tree through three anticollision protocols. We further develop an analytical framework to predict the performance of our protocols and enable protocol parameter selection. We demonstrate that all three protocols provide significant energy savings both at the reader and tags (if they are active tags) compared to the existing Query Tree protocol, while sharing the deterministic property of the latter. Further, we show that our protocols provide similar benefits even with correlated tag IDs.  相似文献   

20.
This paper is intended to present bi-slotted tree based RFID tag anti-collision protocols, bi-slotted query tree algorithm (BSQTA) and bi-slotted collision tracking tree algorithm (BSCTTA). Diminishing prefix overhead and iteration overhead is a significant issue to minimize the anti-collision cost. For fast tag identification, BSQTA and BSCTTA use time divided responses depending on whether the collided bit is `0' or `1' at each tag ID. According to the simulation results, BSQTA and BSCTTA require less time consumption for tag identification than the other tree based RFID tag anti-collision protocols  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号