首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a 60‐GHz power amplifier with on‐chip varactor‐based tunable load‐matching networks and an embedded DC temperature‐sensor‐based power detector. The output power can be monitored by the DC temperature sensor, and load‐matching network can be tuned by regulating the control voltage of the varactors, which can be used for correcting unpredictable process, supply voltage, and temperature (PVT) variations and load mismatch. Measured results show that the small‐signal gain of the CMOS power amplifier is up to 6.5 dB at 52 GHz. The power amplifier achieves 5 dBm output P1dB and 7 dBm saturated output power with 4.5% maximun power added efficiency (PAE) at 1 V control voltage. By sweeping the control voltage of the varactors, the power amplifier can obtain the maximun power gain, which can be used to solve the load mismatch. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

2.
Burst‐mode operation of power amplifier (PA) based on multilevel pulse‐width modulation (MPWM) has been frequently discussed as a potential solution to achieve higher efficiency in radio frequency (RF) transmitters. In this paper, a novel multilevel PWM modulator is proposed that utilizes adaptive triangular reference waveforms. As compared with conventional MPWM modulators, the proposed architecture provides significant wider design space such that the efficiency of system can be effectively optimized. A general transmitter architecture based on the proposed concept is analyzed in terms of power efficiency. Efficiency optimization procedures are presented according to input magnitude statistics. Based on the proposed modulator, an optimized 2.4‐GHz RF transmitter is designed in a 0.18‐μm complementary metal‐oxide‐semiconductor (CMOS) process. The circuit‐level simulations show that it delivers 25.8‐dBm peak output power with 46.1% peak efficiency. For a 20‐MHz worldwide interoperability for microwave access (WiMAX) signal with 8.5‐dB peak‐to‐average‐power ratio (PAPR), this transmitter achieves 28.8% (average) efficiency at 17.3‐dBm (average) output power with an error vector magnitude (EVM) of 2.97% rms.  相似文献   

3.
This paper proposes a 10 b 25 MS/s 4.8 mW 0.13 µm CMOS analog‐to‐digital converter (ADC) for high‐performance portable wireless communication systems, such as digital video broadcasting, digital audio broadcasting, and digital multimedia broadcasting (DMB) systems, simultaneously requiring a low‐voltage, low‐power, and small chip area. A two‐stage pipeline architecture optimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate, while switched‐bias power‐reduction techniques reduce the power consumption of the power‐hungry analog amplifiers. Low‐noise reference currents and voltages are implemented on chip with optional off‐chip voltage references for low‐power system‐on‐a‐chip applications. An optional down‐sampling clock signal selects a sampling rate of 25 or 10 MS/s depending on applications in order to further reduce the power dissipation. The prototype ADC fabricated in a 0.13 µm 1P8M CMOS technology demonstrates a measured peak differential non‐linearity and integral non‐linearity within 0.42 LSB and 0.91 LSB and shows a maximum signal‐to‐noise‐and‐distortion ratio and spurious‐free dynamic range of 56 and 65 dB at all sampling frequencies up to 25 MHz, respectively. The ADC with an active die area of 0.8 mm2 consumes 4.8 and 2.4 mW at 25 and 10 MS/s, respectively, with a 1.2 V supply. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a 40 M–1000 MHz 77.2‐dB spurious free dynamic range (SFDR) CMOS RF variable gain amplifier (VGA) has been presented for digital TV tuner applications. The proposed RFVGA adopts a wideband operational‐amplifier‐based VGA and a wideband buffer with differential multiple gated transistor linearization method for wideband operation and high linearity. The SFDR of the proposed RFVGA is also analyzed in detail. Fabricated in a 0.13‐µm CMOS process, the RFVGA provides 31‐dB gain range with 1‐dB gain step, a minimum noise figure of 7.5 dB at a maximum gain of 27 dB, and maximum in‐band output‐referred third‐order intercept point of 27.7 dBm, while drawing an average current of 27.8 mA with a supply voltage of 3.3 V. The chip core area is 0.54 mm × 0.4 mm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A 1.9‐GHz single‐stage differential stacked‐FET power amplifier with uniformly distributed voltage stresses was implemented using 0.32‐μm 2.8‐V thick‐oxide MOSFETs in a 0.18‐μm silicon‐on‐insulator CMOS process. The input cross‐coupled stacked‐FET topology was proposed to evenly distribute the voltage stresses among the stacked transistors, alleviating the breakdown and reliability issues of the stacked‐FET power amplifier in sub‐micrometer CMOS technology. With a 4‐V supply voltage, the proposed power amplifier with an integrated output coupled‐resonator balun showed a small‐signal gain of 17 dB, a saturated output power of 26.1 dBm, and a maximum power‐added efficiency of 41.5% at the operating frequency. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an RF Front‐END for an 860–960thinspaceMHz passive RFID Reader. The direct conversion receiver architecture with the feedback structure in the RF front‐end circuit is used to give good immunity against the large transmitter leakage and to suppress leakage. The system design considerations for receiver on NF and IIP3 have been discussed in detail. The RF Front‐END contains a power amplifier (PA) in transmit chain and receive front‐end with low‐noise amplifier, up/down mixer, LP filter and variable‐gain amplifier. In the transmitter, a differential PA with a new power combiner is designed and fabricated in a 0.18‐µm technology. The chip area is 2.65 mm × 1.35 mm including the bonding pads. The PA delivers an output power of 29 dBm and a power‐added efficiency of 24% with a power gain of 20 dB, including the losses of the bond‐wires. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Modern RF front‐ends require wide tuning‐range oscillators with quadrature outputs. In this paper we present a two‐integrator quadrature oscillator, which covers the whole bandwidth of UWB applications. A circuit prototype in a 130 nm CMOS technology is continuously tuneable from 3.1 to 10.6 GHz. The circuit die area is less than 0.013mm2, leading to a figure‐of‐merit FOMA of ?176.7dBc/Hz at the upper frequency. The supply voltage is 1.2 V, and the power consumption is 7 mW at the lower frequency and 13 mW at the upper frequency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This letter describes a low‐voltage low‐power (LV‐LP) 2.4‐GHz mixer for Industrial, Scientific and Medical (ISM) band wireless applications. The approach is based on a two‐stage amplifier, and the Gilbert switch stage is inserted between the two amplifier stages. The proposed amplifier‐based mixer delivers a remarkable conversion gain of 13 dB with a local oscillator (LO) power of 7 dBm, while consuming only 1.05‐mW DC power from a 0.8‐V supply voltage. The input‐referred third‐order intercept point (IIP3) of the mixer is 3.82 dBm, and the chip area is only 0.429 mm2. The results indicate that this mixer is suitable for the low‐voltage low‐power applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Low‐frequency (flicker) noise is one of the most important issues in the design of direct‐conversion zero‐IF front‐ends. Within the front‐end building blocks, the direct‐conversion mixer is critical in terms of flicker noise, since it performs the signal down‐conversion to baseband. This paper analyzes the main sources of low‐frequency noise in Gilbert‐cell‐based direct‐conversion mixers, and several issues for minimizing the flicker noise while keeping a good mixer performance in terms of gain, noise figure and power consumption are introduced in a quantitative manner. In order to verify these issues, a CMOS Gilbert‐cell‐based zero‐IF mixer has been fabricated and measured. A flicker noise as low as 10.4 dB is achieved (NF at 10 kHz) with a power consumption of only 2 mA from a 2.7 V power supply. More than 14.6 dB conversion gain and noise figure lower than 9 dB (DSB) are obtained from DC to 2.5 GHz with an LO power of ?10 dBm, which makes this mixer suitable for a multi‐standard low‐power zero‐IF front‐end. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Emerging wide‐band communications and spectrum‐sensing systems demand support for multiple electronically scanned beams while maintaining a frequency independent, constant far‐field beam width. Realizing existing phased‐array technology on a digital scale is computationally intensive. Moreover, digitizing wide‐band signals at Nyquist rate requires complex high‐speed analog‐to‐digital converters (ADCs), which is challenging for real developments driven by the current ADC technology. A low‐complexity alternative proposed in this paper is the use of radio‐frequency (RF) channelizers for spectrum division followed by sub‐sampling of the RF sub‐bands, which results in extensive reduction of the necessary ADC operative frequency. The RF‐channelized array signals are directionally filtered using 2‐D digital filterbanks. This mixed‐domain RF/digital aperture array allows sub‐sampling, without utilizing multi‐rate 2‐D systolic arrays, which are difficult to realize in practice. Simulated examples showing 14–19 dB of rejection of wide‐band interference and noise for a processed bandwidth of 1.6 GHz are demonstrated. The sampling rate is 400 MHz. The proposed VLSI hardware uses a single‐phase clock signal of 400 MHz. Prototype hardware realizations and measurement using 65‐nm Xilinx field‐programmable gate arrays, as well as Cadence RTL synthesis results including gate counts, area‐time complexity, and dynamic power consumption for a 45‐nm CMOS circuit operating at B DC = 1.1 V, are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes the design of a push‐pull power amplifier (PA) with a center‐tapped transformer for transmitter applications on the 5.2‐GHz band using 0.18μm CMOS technology. The type of the proposed PA is based on a double‐ended push–pull (DEPP) configuration. DEPP has a simple construction with only transistors and transformers. The PA has reverse‐phased cascode‐connected transistors. The proposed transformer has a multilayer structure and was designed using electromagnetic field simulation. To achieve high power added efficiency (PAE), we assumed the optimized output impedance technique with a tunable impedance antenna. The PA has 13.2 dB linearity gain, 14.9 dBm 1‐dB compression point (P1dB), and 27.4% maximum PAE. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

12.
A low noise and high linearity down‐conversion CMOS mixer for 2.4‐GHz wireless receiver is presented in this paper. Using a sub‐harmonic balun with a simple but effective B‐type amplifier, the local oscillator frequency required for this mixer has been reduced by half, and the input local oscillator signal could be single‐ended rather than differential, which simultaneously simplifies the design of local oscillator. A distortion and noise cancelation transconductor in association with current bleeding technique is employed to improve the noise and linearity of the entire mixer under a reduced bias current without compromising the voltage gain. Fabricated in a 0.18‐µm RF CMOS technology of Global Foundries, the mixer demonstrates a voltage gain of 15.8 dB and input‐referred third‐order intercept point of 6.6 dBm with a noise figure of 2.6 dB. It consumes 7.65 mA from a 1.0‐V supply and occupies a compact area of 0.75 × 0.71 mm2 including all test pads. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper introduces an optimized receiver architecture using the current‐reuse technique to improve receiver sensitivity while minimizing power consumption. An ISM band wireless receiver with OOK modulation was implemented in the TSMC 0.18‐µm CMOS process. The receiver contains an RF front end, an LC‐tank based LO VCO, an IF amplifier and an OOK demodulator. In addition, the IF amplifier features a self‐mixing elimination mechanism which allows the BER to upgrade more than one order of magnitude. Measurement results show a sensitivity of ?63 dBm given a BER of 10?3. Using the gain‐improving method, the sensitivity is improved by 4 dB (100‐kbps data rate). Including the bias circuit, overall power consumption is less than 383 μW under a 1.2‐V supply, providing an alternate solution for wireless radio applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This work proposes a 14 b 150 MS/s CMOS A/D converters (ADC) for software‐defined radio systems requiring simultaneously high‐resolution, low‐power, and small chip area at high speed. The proposed calibration‐free ADC employs a wide‐band low‐noise input sample‐and‐hold amplifier (SHA) along with a four‐stage pipelined architecture optimizing scaling‐down factors for the sampling capacitance and the input trans‐conductance of amplifiers in each stage to minimize thermal noise effect and power consumption. A signal‐insensitive 3‐D fully symmetric layout achieves a 14 b level resolution by reducing a capacitor mismatch of three MDACs. The prototype ADC in a 0.13µm 1P8M CMOS technology demonstrates a measured differential nonlinearity (DNL) and integral nonlinearity within 0.81LSB and 2.83LSB at 14 b, respectively. The ADC shows a maximum signal‐to‐noise‐and‐distortion ratio of 64 and 61 dB and a maximum spurious‐free dynamic range of 71 and 70 dB at 120 and 150 MS/s, respectively. The ADC with an active die area of 2.0mm2 consumes 140 mW at 150 MS/s and 1.2 V. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A low‐power CMOS receiver baseband analog (BBA) circuit based on alternating filter and gain stage is reported. For the given specifications of the BBA block, optimum allocation of the gain, input‐referred third‐order intercept point (IIP3), and noise figure (NF) of each block is performed to minimize current consumption. The fully integrated receiver BBA chain is fabricated in 0.18µm CMOS technology and IIP3 of 30 dBm with a maximum gain of 59 dB and NF of 31 dB are obtained at 3.6 mW power consumption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A highly selective impedance transformation filtering technique suitable for tunable selective RF receivers is presented in this paper. To achieve blocker rejection comparable with surface acoustic wave (SAW) filters, we use a two‐stage architecture based on a low‐noise transconductance amplifier (LNTA). The filter rejection is captured by a linear periodically varying model that includes band limitation by the LNTA output impedance and the related parasitic capacitances of the impedance transformation circuit. This model is also used to estimate ‘back folding’ by interferers placed at harmonic frequencies. Discussed is also the effect of thermal noise folding and phase noise on the circuit noise figure. As a proof of concept, a chip design of a tunable RF front end using 65 nm complementary metal‐oxide‐semiconductor (CMOS) technology is presented. In measurements, the circuit achieves blocker rejection competitive to SAW filters with noise figure 3.2–5.2 dB, out of band IIP3 > +17 dBm, and blocker P1dB > +5 dBm over frequency range of 0.5–3 GHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A systematic method to design high power and high efficiency mm‐wave fundamental oscillators is presented. By using a linear time variant method, we first obtain the optimum conditions and show that these conditions can be significantly different for high power and high efficiency fundamental oscillation. Next, we propose a modified multistage ring oscillator with interstage passive networks to exploit the full capacity of the transistors in terms of output power or efficiency. Analytical expressions are also derived to determine the value of passive elements used in the oscillator. To verify the validity of the method, a 77‐GHz two‐stage (differential) VCO is designed in a 65‐nm CMOS process. Careful electromagnetic and circuit simulations demonstrate that the designed VCO has 2‐GHz tuning range, maximum output power of 10.5 dBm and maximum DC to RF efficiency of 24.1%. The designed VCO shows 54.8% and 108.7% improvement in terms of maximum output power and efficiency compared with a conventional cross‐coupled VCO with the same tuning range.  相似文献   

18.
Current reuse low‐noise‐amplifiers (CRLNAs) have been the norm to achieve high‐gain and low‐noise figure under low‐power budgets. However, conventional CRLNAs suffer from a severe lack of large‐signal linearity, especially in conventional cascaded CRLNAs. This main drawback is related with the typical biasing method imposed in the output stage. To prove our point, a large‐signal study is performed for a single stage common‐source in two distinct biasing situations: voltage biased and current biased. On the basis of the gathered results, a new CRLNA solution is proposed to relief the large‐signal bottleneck. The suggested design is analyzed in a 0.13 µm complementary metal–oxide–semiconductor (CMOS) standard process. Post‐layout simulations show 8 dB compression point improvement compared with the conventional CRLNA solution. The CRLNA draws a current of 650 μA from a 1.2 V supply. At 2.45 GHz, a power gain of 25.3 dB and a NF of 2.3 dB are achieved, while the IIP3 is ?9 dBm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Sensitivity and electro‐static discharges (ESD) protection level are crucial parameters for any Ultra High‐Frequency (UHF) power rectifier–harvester designed for radio‐frequency identification (RFID) devices. While sensitivity limits the reading range of the interrogator‐to‐tag communication link, the requirement for an adequate protection against ESD is enforced in commercial devices connected to a printed antenna. Both resistive and capacitive parasitics of the protection circuits severely affect RF performance of the device. In the paper, a rectifier for UHF RFID embedding an ESD protection for 2 kV human‐body discharge model (HBM) level is proposed. The target of a low added parasitic capacitance is achieved by adapting the protection circuit to the RFID rectifier and reusing the ESD clamp for additional functions being mandatory in a UHF RFID front end. The layout of the ESD clamp has been optimized for minimum parasitic resistance without sacrificing the protection level. Two UHF harvesters were implemented in a 180 nm digital complementary metal‐oxide semiconductor (CMOS) technology, featuring a minimum sensitivity of ?15.5 dBm with an ESD protection level of 2 kV HBM. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
An ultra-wideband 2- to 12-GHz transmit/receive (T/R) double-pole–eight-throw (DP8T) switching matrix is developed with a 65-nm complementary metal oxide semiconductor (CMOS) process for a radar-based breast cancer detection system. The measured average insertion losses are 5.2, 7, and 10.6 dB at 2, 6, and 12 GHz, respectively, with input and output matching bandwidths of 2 to 12 GHz and a third-order input intercept point (IIP3) of 31 dBm at 8 GHz. The power consumption is less than 1 mW for a 1.2-V power supply. To the best of the authors' knowledge, this is the first reported DP8T CMOS switching matrix to replace the conventional mechanical switch to control a portable radar antenna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号