首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current mirror is one of the basic building blocks of analog VLSI systems. For high‐performance analog circuit applications, the accuracy and bandwidth are the most important parameters to determine the performance of the current mirror. This paper presents an efficient implementation of a CMOS current mirror suitable for low‐voltage applications. This circuit combines a shunt input feedback, a regulated cascade output and a differential amplifier to achieve low input resistance, high accuracy and high output resistance. A comparison of several architectures of this scheme based on different architectures of the amplifier is presented. The comparison includes: input impedance, output impedance, accuracy, frequency response and settling time response. These circuits are validated with simulation in 0.18µm CMOS TSMC of MOSIS. In this paper, a linear voltage to current converter, based on the adapted current mirror, is proposed. Its static and dynamic behaviour is presented and validated with the same technology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an improved topology for ultra‐low‐power complementary metal oxide semiconductor (CMOS) distributed amplifier (DA) based on modified folded cascode gain cells. The proposed CMOS‐DA can be applicable in low‐supply‐voltage applications, because of the use of folded gain cell's structure. The proposed DA decreases power consumption by employing the forward body biasing network, while maintains high gain. By using a gain‐peaking inductor at the gate of the transistor, the proposed DA structure achieved to the gain flatness in high frequencies while the bandwidth is improved as well. In addition, employing RC network at the body terminal improves the noise performance of the proposed DA. The DA architecture consists of three amplification stages. Detailed analysis is provided for the proposed folded cascode DA. According to the post‐layout simulation results of the proposed amplifier using a 0.13‐µm CMOS process, DA achieves power gain of 17.3 ± 0.8 dB in bandwidth of 14.5 GHz, a good input third‐order intercept point (IIP3) of +5.5 dBm. The minimum noise figure is 1.8–5 dB, and input and output return losses are less than −11.5 dB and −10 dB, respectively, and the proposed structure consumes 12 mW from a 0.5 V voltage supply. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A new solution for an ultra low voltage bulk‐driven programmable gain amplifier (PGA) is described in the paper. While implemented in a standard n‐well 0.18‐µm complementary metal–oxide–semiconductor (CMOS) process, the circuit operates from 0.3 V supply, and its voltage gain can be regulated from 0 to 18 dB with 6‐dB steps. At minimum gain, the PGA offers nearly rail‐to‐rail input/output swing and the input referred thermal noise of 2.37 μV/Hz1/2, which results in a 63‐dB dynamic range (DR). Besides, the total power consumption is 96 nW, the signal bandwidth is 2.95 kHz at 5‐pF load capacitance and the third‐order input intercept point (IIP3) is 1.62 V. The circuit performance was simulated with LTspice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
We present in this paper two low‐power high‐impedance microelectrode array drivers (MEDs) dedicated for visual intracortical microstimulation. These output stages of a new microstimulator are highly configurable and able to deliver higher compliance voltage (20 V for anodic and cathodic phases) across microelectrode‐tissue interface impedance compared with previously reported designs. Each MED is featured with a high‐voltage switch‐matrix, 3.3 V/20 V current mirrors, an on‐chip 32‐bit serial‐in parallel‐out shift register, and the new forbidden state logic circuits. Both systems are able to deliver eight bipolar or 16 monopolar stimulation simultaneously. The first MED is able to deliver one stimulation current level and the second one provides four different current amplitudes simultaneously to 16 electrodes. Two microchips have been designed and fabricated using Teledyne DALSA 0.8 µm 5V/ 20v double‐diffused metal‐oxide‐semiconductor field‐effect transistor (Teledyne DALSA Semiconductor, Bromont, Québec, Canada) technology to meet the required high‐voltage compliance. The nominal values of largest supply voltages are ±10 V. The maximum stimulation current per input channel is 400 μA and per output channel through an emulated microelectrode impedance of 100 kΩ is 100 μA. The measured output compliance voltage is 10 V/phase (anodic or cathodic) for the specified supply voltages. Increment of supply voltages to ±13 V allows 220 μA stimulation current per output channel enhancing the output compliance voltage up to 20 V/phase. The measured quiescent power consumptions of the proposed microelectrode array drivers are 316 and 735 μW, respectively. Post‐layout simulation and measurement results of two MEDs and comparison with other designs have been reported in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A low‐power low‐jitter voltage‐mode (VM) transmitter with two‐tap pre‐emphasis and impedance calibration for high‐speed serial links is presented. Based on a comprehensive analysis of the relationship between impedance, supply current, and pre‐emphasis of the output driver, an impedance control circuit (ICU) is presented to maintain the 50 Ω output impedance and suppress the reflection, a self‐biased regulator is proposed to regulate the power supply, and an edge driver is introduced to speed up the signal transition time. Therefore, the signal integrity (SI) of the transmitter is improved with low power consumption. The whole transmitter is implemented in 65‐nm CMOS technology. It provides an eye height greater than 688 mV at the far end with a root‐mean‐squared jitter of less than 6.99 ps at 5 Gbps. The transmitter consumes 15.2 mA and occupies only 370 μm × 230 μm. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

6.
A low‐voltage, low‐power, low‐area, wide‐temperature‐range CMOS voltage reference is presented. The proposed reference circuit achieves a measured temperature drift of 15 ppm/°C for an extremely wide temperature range of 190 °C (?60 to 130 °C) while consuming only 4 μW at 0.75 V. It performs a high‐order curvature correction of the reference voltage while consisting of only CMOS transistors operating in subthreshold and polysilicon resistors, without utilizing any diodes or external components such as compensating capacitors. A trade‐off of this circuit topology, in its current form, is the high line sensitivity. The design was fabricated using TowerJazz semiconductor's 0.18‐µm standard CMOS technology and occupies an area of 0.039 mm2. The proposed reference circuit is suitable for high‐precision, low‐energy‐budget applications, such as mobile systems, wearable electronics, and energy harvesting systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a novel low‐power CMOS extra low‐frequency (ELF) waveform generator based on an operational trans‐conductance amplifier (OTA). The generator has been designed and fabricated using 2.5‐V devices available in 130‐nm IBM CMOS technology with a ±1.2‐V voltage supply. Using the same topology, two sets of device dimensions and circuit components are designed and fabricated for comparing relative performance, silicon area and power dissipation. The first design consumes 691 μW, while the second design consumes 943 μW using the same voltage supply. This low‐power performance enables the circuit to be used in many micro‐power applications. ELF oscillation is achieved for the two designs being around 3.95 Hz and 3.90 Hz, respectively, with negligible waveform distortion. The measured frequencies agree well with the simulation results. The first design is found to provide overall optimal performance compared to the second design at the expense of higher silicon area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A high‐order curvature‐corrected complementary metal–oxide–semiconductor (CMOS) bandgap voltage reference (BGR), utilizing the temperature‐dependent resistor and constant current technique, is presented. Considering the process variation, a resistor trimming network is introduced in this work. The circuit is implemented in a standard 0.35‐µm CMOS process. The measurement results have confirmed that the proposed BGR operates with a supply voltage of 1.8 V, consuming 45 μW at room temperature (25 °C), and the temperature coefficient of the output voltage reference is about 5.5 ppm/°C from −40 °C to 125 °C. The measured power supply rejection ratio is −38.8 dB at 1 kHz. The BGR is compatible with low‐voltage and low‐power circuit design when the structure of operational amplifiers and all the devices in the proposed bandgap reference are properly designed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A new energy‐efficient tunable pulse generator is presented in this paper using 0.13‐µm CMOS technology for short‐range high‐data‐rate 3.1–10.6 GHz ultra‐wideband applications. A ring oscillator consisting of current‐starved CMOS inverters is quickly switched on and off for the duration of the pulse, and the amplitude envelope is shaped with a variable passive CMOS attenuator. The variable passive attenuator is controlled using an impulse that is created by a low‐power glitch generator (CMOS NOR gate). The glitch generator combines the falling edge of the clock and its delayed inverse, allowing the duration of the impulse to be changed over a wide range (500–900 ps) by varying the delay between the edges. The pulses generated with this technique can provide a sharp frequency roll off with high out‐of‐band rejection to help meet the Federal Communications Commission mask. The entire circuit operates in switched mode with a low average power consumption of less than 3.8 mW at 910 MHz pulse repetition frequency or below 4.2 pJ of energy per pulse. It occupies a total area of 725 × 600 µm2 including bonding pads and decoupling capacitors, and the active circuit area is only 360 × 200 µm2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A class AB version of the conventional super source follower (SSF) is described. The circuit greatly increases slew rate (SR) and current efficiency, maintaining the low distortion and low output resistance of the SSF. Class AB operation is achieved without extra power dissipation or supply requirements, and without bandwidth or noise degradation. The circuit can advantageously replace the SSF in a wide variety of analog systems, opening a new research line in analog design. To illustrate the widespread application of this cell, a class AB differential unity‐gain buffer, a class AB differential current mirror and two class AB differential transconductors are designed, fabricated in a 0.5µm CMOS technology and tested. Measurement results using a dual supply of ±1.65V show that the proposed class AB version of the SSF improves SR by a factor 21.5 and increases bandwidth by 10%, keeping noise level, input range, power consumption, and supply requirements unaltered. The fabricated class AB current mirror features a THD at 100 kHz of ? 62dB for signal currents 20 times larger than the bias current. The fabricated transconductors feature an IM3 at 1 MHz of ? 56.6dB for output currents more than 13 times larger than the bias currents. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A low voltage bulk‐driven operational transconductance amplifier (OTA) and its application to implement a tunable Gm‐C filter are presented. The linearity of the proposed OTA is achieved by nonlinear terms cancelation technique, using two paralleled differential topologies with opposite signs in the third‐order harmonic distortion term of the differential output current. The proposed OTA uses 0.8 V supply voltage and consumes 31.2 μW. The proposed OTA shows a total harmonic distortion of better than ?40 dB over the tuning range of the transconductance, by applying 800 mVppd sine wave input signal with 1 MHz frequency. The OTA has been used to implement a third‐order low‐pass Gm‐C filter, which can be used for wireless sensor network applications. The filter can operate as the channel select filter and variable gain amplifier, simultaneously. The gain of the filter can be tuned from ?1 to 23 dB, which results in power consumptions of 187.2 to 450.6 μW, respectively. The proposed OTA and filter have been simulated in a 0.18 µm CMOS technology. Simulations of process corners and temperature variations are also included in the paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
An oscillating circuit functioning at ultra low power (350 nA) for a 5‐MHz AT‐cut quartz crystal oscillator was investigated. This circuit has a resistance between the power terminal of the CMOS‐IC and the power supply, and another between the earth terminal of the CMOS‐IC and the ground (GND). These resistances discourage an inrush of current, and set a gain (gm) necessary for oscillating the circuit at minimum. The developed circuit is quite simple, but enables driving at once‐unthinkable, low power (below 1 µA). © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

13.
This letter presents a method for improving the transient response of DC‐DC converters. The proposed technique replaces the conventional error amplifier with a combination of two different amplifiers to achieve a high loop gain and high slew rate. In addition, a rapid output‐voltage control circuit is employed to further reduce the recovery time. The proposed technique was applied to a four‐phase buck converter, and the chip was implemented using a 0.18‐μm CMOS process. The switching frequency of each phase was set at 2 MHz. Using a supply voltage of 2.7–5.5 V and an output voltage of 0.6–1.5 V, the regulator provided up to 2‐A load current with maximum measured recovery time of only 6.2 and 6.5 μs for increasing and decreasing load current, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a high resolution time‐to‐digital converter (TDC) for low‐area applications. To achieve both high resolution and low circuit area, we propose a dual‐slope voltage‐domain TDC, which is composed of a time‐to‐voltage converter (TVC) and an analog‐to‐digital converter (ADC). In the TVC, a current source and a capacitor are used to make the circuit as simple as possible. For the same reason, a single‐slope ADC, which is commonly used for compact area ADC applications, is adapted and optimized. Because the main non‐linearity occurs in the current source of the TVC and the ramp generator of the ADC, a double gain‐boosting current source is applied to overcome the low output impedance of the current source in the sub‐100‐nm CMOS process. The prototype TDC is implemented using a 65‐nm CMOS process, and occupies only 0.008 mm2. The measurement result shows a dynamic range with an 8‐bit 8.86‐ps resolution and an integrated non‐linearity of ±1.25 LSB. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A novel CMOS cascode current mirror configuration with enhanced input dynamic range is presented. The proposed mirror circuit combines the advantages of wide input swing, wide output swing and large output resistance capability, which make it attractive for practical application. Based on 0.18 µm MOS model parameters, HSPICE simulation results show that the input current ranges from 1 µA to 1 mA with large bandwidth for the proposed circuit. The simulation results confirm the theoretical prediction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
An integrated sub‐1V voltage reference generator, designed in standard 90‐nm CMOS technology, is presented in this paper. The proposed voltage reference circuit consists of a conventional bandgap core based on the use of p‐n‐p substrate vertical bipolar devices and a voltage‐to‐current converter. The former produces a current with a positive temperature coefficient (TC), whereas the latter translates the emitter‐base voltage of the core p‐n‐p bipolar device to a current with a negative TC. The circuit includes two operational amplifiers with a rail‐to‐rail output stage for enabling stable and robust operation overall process and supply voltage variations while it employs a total resistance of less than 600 K Ω. Detailed analysis is presented to demonstrate that the proposed circuit technique enables die area reduction. The presented voltage reference generator exhibits a PSRR of 52.78 dB and a TC of 23.66ppm/°C in the range of ? 40 and 125°C at the typical corner case at 1 V. The output reference voltage of 510 mV achieves a total absolute variation of ± 3.3% overall process and supply voltage variations and a total standard deviation, σ, of 4.5 mV, respectively, in the temperature range of ? 36 and 125°C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A large capacitive load amplifier with enhanced active‐feedback frequency compensation is proposed in this paper. The enhancement is achieved through using a wide‐bandwidth scalar circuit to increase the transconductance of the output stage so that the overall bandwidth of the amplifier can be extended considerably. Implemented in a standard CMOS 130‐nm technology, with a supply of 0.7 V and consuming 27 μA of current, the amplifier drives a load capacitor of 15 nF. No on‐chip resistor is needed; only a 0.91‐pF compensation capacitor is used to maintain stability. The achieved gain‐bandwidth product and phase margin are 1.28 MHz and 66.9°, respectively. Moreover, the slew rate is 0.263 V/μs. The active chip area is 0.0056 mm2. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
This article presents a low quiescent current output‐capacitorless quasi‐digital complementary metal‐oxide‐semiconductor (CMOS) low‐dropout (LDO) voltage regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is segmented into two smaller sizes based on a proposed segmentation criterion, which considers the maximum output voltage transient variations due to the load transient to different load current steps to find the suitable current boundary for segmentation. This criterion shows that low load conditions will cause more output variations and settling time if the pass transistor is used in its maximum size. Furthermore, this situation is the worst case for stability requirements of the LDO. Therefore, using one smaller transistor for low load currents and another one larger for higher currents, a proper trade‐off between output variations, complexity, and power dissipation is achieved. The proposed LDO regulator has been designed and post‐simulated in HSPICE in a 0.18 µm CMOS process to supply a stable load current between 0 and 100 mA with a 40 pF on‐chip output capacitor, while consuming 4.8 μA quiescent current. The dropout voltage of the LDO is set to 200 mV for 1.8 V input voltage. The results reveal an improvement of approximately 53% and 25% on the output voltage variations and settling time, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a sub‐1 V CMOS bandgap voltage reference that accounts for the presence of direct tunneling‐induced gate current. This current increases exponentially with decreasing oxide thickness and is especially prevalent in traditional (non‐high‐κ/metal gate) ultra‐thin oxide CMOS technologies (tox < 3 nm), where it invalidates the simplifying design assumption of infinite gate resistance. The developed reference (average temperature coefficient, TC_AVG, of 22.5 ppm/°C) overcomes direct tunneling by employing circuit techniques that minimize, balance, and cancel its effects. It is compared to a thick‐oxide voltage reference (TC_AVG = 14.0 ppm/°C) as a means of demonstrating that ultra‐thin oxide MOSFETs can achieve performance similar to that of more expensive thick(er) oxide MOSFETs and that they can be used to design the analog component of a mixed‐signal system. The reference was investigated in a 65 nm CMOS technology with a nominal VDD of 1 V and a physical oxide thickness of 1.25 nm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A unified multi‐stage power‐CMOS‐transmission‐gate‐based quasi‐switched‐capacitor (QSC) DC–DC converter is proposed to integrate both step‐down and step‐up modes all in one circuit configuration for low‐power applications. In this paper, by using power‐CMOS‐transmission‐gate as a bi‐directional switch, the various topologies for step‐down and step‐up modes can be integrated in the same circuit configuration, and the configuration does not require any inductive elements, so the IC fabrication is promising for realization. In addition, both large‐signal state‐space equation and small‐signal transfer function are derived by state‐space averaging technique, and expressed all in one unified formulation for both modes. Based on the unified model, it is all presented for control design and theoretical analysis, including steady‐state output and power, power efficiency, maximum voltage conversion ratio, maximum power efficiency, maximum output power, output voltage ripple percentage, capacitance selection, closed‐loop control and stability, etc. Finally, a multi‐stage QSC DC–DC converter with step‐down and step‐up modes is made in circuit layout by PSPICE tool, and some topics are discussed, including (1) voltage conversion, output ripple percentage, and power efficiency, (2) output robustness against source noises and (3) regulation capability of converter with loading variation. The simulated results are illustrated to show the efficacy of the unified configuration proposed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号