首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we present a detailed study of the phase noise of subharmonic injection locked oscillators (s‐ILOs). A new simple and efficient model has been presented for accurately predicting the phase noise of a microwave s‐ILO. The validity of the analytical technique is verified with measurement results obtained from a 5‐GHz fully differential Colpitts‐based s‐ILO. The results showed that a phase noise improvement of 12 dB at 1 kHz offset frequency compared to the free‐running case can be achieved, whereas the power consumption is 21 mW. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an original time‐domain analysis of the phase‐diffusion process, which occurs in oscillators due to the presence of white and colored noise sources. It is shown that the method supplies realistic quantitative predictions of phase‐noise and jitter and provides useful design‐oriented closed‐form expressions of such phenomena. Analytical expressions and numerical simulations are verified through measurements performed on a relaxation oscillator whose behavior is perturbed by externally controlled noise sources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper analyzes the thermally induced phase noise and the up-conversion of flicker noise into phase noise of source injection coupled quadrature oscillator (SIC-QOSC), for the first time. Furthermore, this paper provides a complete analysis for the injection current of the SIC-QOSC and extracts the closed-form expressions for it for the first time, too. These expressions lead to obtaining the harmonics of the injection current as well as the oscillation amplitude, which is necessary for the phase noise analysis. To evaluate the extracted equations, this paper compares the calculated results with appropriate simulations. Comparisons confirm the accuracy of the proposed injection current expressions and the phase noise formulas. Using the closed-form equations of phase noise, designers can understand the SIC-QOSC's design tradeoffs and design the oscillator for given phase noise.  相似文献   

4.
A relaxation oscillator design is described, which has a phase noise rivaling ring oscillators, while also featuring linear frequency tuning. We show that the comparator in a relaxation‐oscillator loop can be prevented from contributing to 1/f2 colored phase noise and degrading control linearity. The resulting oscillator is implemented in a power efficient way with a switched‐capacitor circuit. The design results from a thorough analysis of the fundamental phase noise contributions. Simple expressions modeling the theoretical phase noise performance limit are presented, as well as a design strategy to approach this limit. To verify theoretical predictions, a relaxation oscillator is implemented in a baseline 65 nm CMOS process, occupying 200 µm × 150 µm. Its frequency tuning range is 1–12 MHz, and its phase noise is L(100kHz) = ?109dBc/Hz at fosc = 12MHz, while consuming 90 μW. A figure of merit of ?161dBc/Hz is achieved, which is only 4 dB from the theoretical limit. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Oscillators act as signal sources for wireless communication systems, radars, wireless charging, and other industrial applications, whose phase noises directly determine system performance. In this paper, two low-phase noise microwave oscillators based on novel microstrip second-order band-pass filters are presented. These filters are characterized by good frequency selectivity owing to two transmission zeros near to the passbands. As a result, relatively high group delay can be achieved at center frequencies, which is vital to the phase noise performance of the oscillators to be designed. Simultaneously, the bandwidths can be made narrow enough so that actual oscillating frequency is very close to the designed one. In addition, the introduction of stepped impedance makes these filters capable of harmonic suppression, which efficiently suppresses the harmonics in the output such as the second harmonic. These filters are compact and also of easy design. Finally, two microwave oscillators at 2.0 GHz are designed on these microstrip filters. As the measured results show, their output frequencies are 2.002 GHz. The phase noises are −127.21 and −127.03 dBc/Hz@100 kHz, respectively. The second harmonic suppressions are as great as 30.45 and 39.21 dBc, respectively.  相似文献   

7.
Decomposition of noise perturbation along Floquet eigenvectors has been extensively used in order to achieve a complete analysis of phase noise in oscillator. Piecewise‐linear approximation of nonlinear devices is usually adopted in numerical calculation based on multi‐step integration method for the determination of unperturbed oscillator solution. In this case, exact determination of the monodromy matrix can be hampered by the presence of discontinuities between models introduced by the approximation. In this paper we demonstrate that, without the proper corrections, relevant errors occur in the determination of eigenvalues and eigenvectors, if adjacent linear models presents discontinuities. We obtain this result by the analysis of a simple 2‐D oscillator with piecewise‐linear parameter. We also demonstrate that a correct calculation can be achieved introducing properly calculated state vector boundary conditions by the use of interface matrices. This correction takes into account the effects of discontinuities between the linear models, leading to exact calculation of eigenvalues and eigenvectors, and, consequently, of the phase noise spectrum. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
When a local oscillator signal generation system is based on an LC oscillator and a frequency multiplier, the question of determining the optimal multiplication factor is a key issue. In this paper, the problem is addressed in order to minimize the 1/f 2 phase noise within a tuning range constraint. The analysis, with a practical graphical representation, reveals the oscillator phase noise dependence on the oscillating frequency in the transition from two different regimes, named the inductor‐limited quality factor and the capacitor‐limited quality factor. The results obtained enable the evaluation of the phase noise performance of systems based on a sub‐harmonic and super‐harmonic oscillators and how they compare with an oscillator in the fundamental mode. Crucial questions like the phase noise improvement that these systems can achieve are analytically answered. A design methodology is thus proposed and verified through measurements on a frequency source at 31 GHz, composed by a sub‐harmonic voltage‐controlled oscillator followed by an injection‐locked frequency tripler, dedicated to backhauling applications, designed on a BiCMOS process technology. The tuning range is 10%, and the phase noise at a 1‐MHz offset is −112 dBc/Hz. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Formal models of communicating and concurrent systems are one of the most important topics in formal methods, and process calculus is one of the most successful formal models of communicating and concurrent systems. In the previous works, the author systematically studied topology in process calculus, probabilistic process calculus and pi-calculus with noisy channels in order to describe approximate behaviors of communicating and concurrent systems as well as randomness and noise in them. This article is a brief survey of these works.  相似文献   

10.
This paper analyzes the thermally induced phase noise and the up-conversion of flicker noise into phase noise of rotary traveling-wave oscillator (RTWO). Based on the analyses, this paper extracts the closed-form formulas for the thermal and flicker phase noise of the RTWO. This paper compares the theoretical results with appropriate simulations to evaluate the accuracy of the derived closed-form formulas. Comparisons confirm the accuracy of the extracted phase noise formulas. By using the presented straightforward approach along with accurate phase noise formulas, the designers can understand the RTWO ' s design tradeoffs. Also, they can design the RTWO for a specific phase noise without needing lengthy simulations.  相似文献   

11.
This study developed a local oscillator (LO) with low phase noise and low power consumption. The proposed oscillator core comprises a pair of cross‐coupled transistors, which are fed by another pair of transistors that injects current at moments close to the peak of output voltage. The position of the current injection transistors, which are inserted in series with the cross‐coupled transistors, affects the waveform of current injected into an inductive–capacitive (LC) tank. Installing a capacitor on the source node of the cross‐coupled transistors increases the current injected into the LC tank and thereby augments the output voltage amplitude and power efficiency of the LO. The resonator phase shift and Q can be corrected by adjusting the source capacitance, which filters noise. These changes reduce the phase noise to ?123.4 dBc/Hz at a frequency offset of 1 MHz and improve oscillator performance with a figure of merit equal to ?193.5 dBc/Hz. To evaluate the LC tank, a 5 GHz LO was simulated at 1.8 V power supply and 2.5 mW power consumption. The simulation was conducted using a practical 0.18 complementary metal–oxide–semiconductor model manufactured by the Taiwan Semiconductor Manufacturing Company. The simulation results confirmed the analytical findings.  相似文献   

12.
This paper reports a phase noise analysis in a differential Armstrong oscillator circuit topology in CMOS technology. The analytical expressions of phase noise due to flicker and thermal noise sources are derived and validated by the results obtained through SpectreRF simulations for oscillation frequencies of 1, 10, and 100 GHz. The analysis captures well the phase noise of the oscillator topology and shows the impact of flicker noise contribution as the major effect leading to phase noise degradation in nano‐scale CMOS LC oscillators. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Relaxation RC‐oscillators are notorious for their poor phase‐noise performance. However, there are reasons to expect a phase‐noise reduction in quadrature oscillators obtained by cross‐coupling two relaxation oscillators. We present measurements on 5 GHz oscillators, which show that in RC‐oscillators the coupling reduces both the phase‐noise and quadrature error, whereas in LC‐oscillators the coupling reduces the quadrature error, but increases the phase‐noise. A comparison using standard figures of merit indicates that quadrature RC‐oscillators may be a viable alternative to LC‐oscillators when area and cost are to be minimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
An analysis of the flicker noise conversion to close‐in phase noise in complementary metal‐oxide semiconductor (CMOS) differential inductance‐capacitance (LC)‐voltage controlled oscillator is presented. The contribution of different mechanisms responsible for flicker noise to phase noise conversion is investigated from a theoretical point of view. Impulse sensitivity function theory is exploited to quantify flicker noise to phase noise conversion process from both tail and core transistors. The impact of different parasitic capacitances inside the active core on flicker noise to phase noise conversion is investigated. Also, it is shown how different flicker noise models for core metal‐oxide semiconductor (MOS) transistors may result in different close‐in phase noise behaviors. Based on the developed analysis, design guidelines for reducing the close‐in phase noise are introduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
参考信号发生器是频率合成系统的重要组成部分,是实现低噪声频率合成的基础。本文介绍了产生低相位噪声参考信号常用的技术方法,重点讨论了如何基于锁相环频率合成法实现极低相位噪声参考发生器的设计。最后基于本文讨论的技术方法,设计出了一种具有极低相位噪声的参考信号发生器,并给出了实验结果。该参考信号发生器应用于某高纯微波信号源中,取得了很好的效果。  相似文献   

16.
A new method to decrease the phase noise of the sinusoidal oscillators is proposed. The proposed method is based on using a dynamic transistor biasing in a typical oscillator topology. This method uses the oscillator impulse sensitivity function (ISF) shaping to reduce the sensitivity of the oscillator to the transistor noise and as a result reducing the oscillator phase noise. A 1.8 GHz, 1.8 V designed oscillator based on the proposed method shows a phase noise of ?130.3dBc/Hz at 1 MHz offset frequency, thereby showing about 6 dB phase noise decreasing in comparison with the typical constant bias topology. This result is obtained from the simulation based on 0.18u CMOS technology and on‐chip spiral inductor with a quality factor equal to 8. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
低噪声微波频率综合器在现代电子系统和高性能测试系统中起着非常重要的作用,其实现方式通常以压控振荡器(VCO)和YIG调谐振荡器锁相频率合成为主。基于4~9 GHz YIG调谐振荡器,通过VCO合成小步进可变参考,使锁相环路在不降低鉴相频率的前提下,设计了完成高分辨率、低杂散的宽带低噪声YIG频率综合器。技术验证样品测试结果表明,在4~9 GHz工作带宽内频率步进为1 k Hz,相位噪声优于-95d Bc@10 k Hz,-115 d Bc@100 k Hz,其软硬件设计支持连续扫频和合成扫频功能,工作性能稳定可靠,可满足工程中本振和信号源应用需求。  相似文献   

18.
This paper presents a comprehensive comparison between complementary metal‐oxide‐semiconductor (CMOS) LC‐oscillator topologies often used in GHz‐range transceivers. The comparison utilizes the time‐varying root‐locus (TVRL) method to add new insights into the operation of different oscillators. The paper focuses on the treatment of the TVRL trajectories obtained for different oscillators and establishes links between the trajectories and physical phenomena in oscillators. The evaluation of the root trajectories shows the advantages of the TVRL method for comparing oscillator topologies, which is also extended towards the analysis of voltage‐controlled oscillators. The necessary circuit simplifications required in closed‐form root‐locus analysis are avoided by the TVRL, which allows precise oscillator comparison and reveals details on the topology specifics. The derived conclusions have been verified by the Cadence Spectre‐RF simulator on 130‐nm CMOS process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
基于VC++平台设计一款信号源与频谱仪的联控相位噪声测试软件,由于具有前置放大器的先进频谱仪的电平测量准确度高本地噪声小,因此可用此类频谱仪测得信号源的相位噪声。利用Agilent信号源与频谱仪联合测试的方法,推导出频谱仪测量被测系统噪声的修正公式,并在相位测试软件中对所测噪声加以修正,最终利用Agilent VISA编程接口设计出测试软件实现了智能化测试被测系统的相位噪声。  相似文献   

20.
Oscillators exist in many systems. Detailed and correct characterization and comprehension of noise in autonomous systems such as oscillators is of utmost importance. Previous approaches to oscillator noise analysis are based on some kind of perturbation analysis, some linear and some nonlinear. However, the derivations of the equations for perturbation analysis are all based on information that is produced by a linearization of the oscillator equations around the periodic steady‐state solution, where it is assumed that the oscillator is orbitally stable and it has the so‐called asymptotic phase property. In this paper, we first discuss these notions from a qualitative perspective, and demonstrate that the asymptotic phase property is crucial in validating all of the previous approaches. We then present the case of a simple oscillator that is orbitally stable but without asymptotic phase, for which previous approaches fail. We then present a fully nonlinear noise analysis of this oscillator. We derive and compute nonlinear, non‐stationary and non‐Gaussian stochastic characterizations for both amplitude and phase noise. We arrive at results that are distinctly different when compared with the ones obtained previously for oscillators with asymptotic phase. We compare and verify our analytical results against extensive Monte Carlo simulations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号